1,037 research outputs found

    -Generic Computability, Turing Reducibility and Asymptotic Density

    Full text link
    Generic computability has been studied in group theory and we now study it in the context of classical computability theory. A set A of natural numbers is generically computable if there is a partial computable function f whose domain has density 1 and which agrees with the characteristic function of A on its domain. A set A is coarsely computable if there is a computable set C such that the symmetric difference of A and C has density 0. We prove that there is a c.e. set which is generically computable but not coarsely computable and vice versa. We show that every nonzero Turing degree contains a set which is not coarsely computable. We prove that there is a c.e. set of density 1 which has no computable subset of density 1. As a corollary, there is a generically computable set A such that no generic algorithm for A has computable domain. We define a general notion of generic reducibility in the spirt of Turing reducibility and show that there is a natural order-preserving embedding of the Turing degrees into the generic degrees which is not surjective

    Infinite time Turing machines and an application to the hierarchy of equivalence relations on the reals

    Full text link
    We describe the basic theory of infinite time Turing machines and some recent developments, including the infinite time degree theory, infinite time complexity theory, and infinite time computable model theory. We focus particularly on the application of infinite time Turing machines to the analysis of the hierarchy of equivalence relations on the reals, in analogy with the theory arising from Borel reducibility. We define a notion of infinite time reducibility, which lifts much of the Borel theory into the class Δ21\bm{\Delta}^1_2 in a satisfying way.Comment: Submitted to the Effective Mathematics of the Uncountable Conference, 200

    Enumeration Reducibility in Closure Spaces with Applications to Logic and Algebra

    Full text link
    In many instances in first order logic or computable algebra, classical theorems show that many problems are undecidable for general structures, but become decidable if some rigidity is imposed on the structure. For example, the set of theorems in many finitely axiomatisable theories is nonrecursive, but the set of theorems for any finitely axiomatisable complete theory is recursive. Finitely presented groups might have an nonrecursive word problem, but finitely presented simple groups have a recursive word problem. In this article we introduce a topological framework based on closure spaces to show that many of these proofs can be obtained in a similar setting. We will show in particular that these statements can be generalized to cover arbitrary structures, with no finite or recursive presentation/axiomatization. This generalizes in particular work by Kuznetsov and others. Examples from first order logic and symbolic dynamics will be discussed at length

    Closed Choice and a Uniform Low Basis Theorem

    Get PDF
    We study closed choice principles for different spaces. Given information about what does not constitute a solution, closed choice determines a solution. We show that with closed choice one can characterize several models of hypercomputation in a uniform framework using Weihrauch reducibility. The classes of functions which are reducible to closed choice of the singleton space, of the natural numbers, of Cantor space and of Baire space correspond to the class of computable functions, of functions computable with finitely many mind changes, of weakly computable functions and of effectively Borel measurable functions, respectively. We also prove that all these classes correspond to classes of non-deterministically computable functions with the respective spaces as advice spaces. Moreover, we prove that closed choice on Euclidean space can be considered as "locally compact choice" and it is obtained as product of closed choice on the natural numbers and on Cantor space. We also prove a Quotient Theorem for compact choice which shows that single-valued functions can be "divided" by compact choice in a certain sense. Another result is the Independent Choice Theorem, which provides a uniform proof that many choice principles are closed under composition. Finally, we also study the related class of low computable functions, which contains the class of weakly computable functions as well as the class of functions computable with finitely many mind changes. As one main result we prove a uniform version of the Low Basis Theorem that states that closed choice on Cantor space (and the Euclidean space) is low computable. We close with some related observations on the Turing jump operation and its initial topology
    • …
    corecore