639 research outputs found

    All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs

    Full text link
    We describe algorithms, based on Avis and Fukuda's reverse search paradigm, for listing all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded degree graphs, our algorithms take constant time per set generated; for minor-closed graph families, the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed graph families the time per update is constant, while it is sublinear for any sparse graph family. We can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of the maintained set in time O(sqrt m) per update. We use the domination data structures as part of our enumeration algorithms.Comment: 10 page

    Beating the Generator-Enumeration Bound for pp-Group Isomorphism

    Full text link
    We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G cong H. For several decades, the n^(log_p n + O(1)) generator-enumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first improvement over the generator-enumeration bound for p-groups, which are believed to be the hard case of the group isomorphism problem. We start by giving a Turing reduction from group isomorphism to n^((1 / 2) log_p n + O(1)) instances of p-group composition-series isomorphism. By showing a Karp reduction from p-group composition-series isomorphism to testing isomorphism of graphs of degree at most p + O(1) and applying algorithms for testing isomorphism of graphs of bounded degree, we obtain an n^(O(p)) time algorithm for p-group composition-series isomorphism. Combining these two results yields an algorithm for p-group isomorphism that takes at most n^((1 / 2) log_p n + O(p)) time. This algorithm is faster than generator-enumeration when p is small and slower when p is large. Choosing the faster algorithm based on p and n yields an upper bound of n^((1 / 2 + o(1)) log n) for p-group isomorphism.Comment: 15 pages. This is an updated and improved version of the results for p-groups in arXiv:1205.0642 and TR11-052 in ECC
    • …
    corecore