11,031 research outputs found

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic

    The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy

    Full text link
    The principle of maximum entropy (Maxent) is often used to obtain prior probability distributions as a method to obtain a Gibbs measure under some restriction giving the probability that a system will be in a certain state compared to the rest of the elements in the distribution. Because classical entropy-based Maxent collapses cases confounding all distinct degrees of randomness and pseudo-randomness, here we take into consideration the generative mechanism of the systems considered in the ensemble to separate objects that may comply with the principle under some restriction and whose entropy is maximal but may be generated recursively from those that are actually algorithmically random offering a refinement to classical Maxent. We take advantage of a causal algorithmic calculus to derive a thermodynamic-like result based on how difficult it is to reprogram a computer code. Using the distinction between computable and algorithmic randomness we quantify the cost in information loss associated with reprogramming. To illustrate this we apply the algorithmic refinement to Maxent on graphs and introduce a Maximal Algorithmic Randomness Preferential Attachment (MARPA) Algorithm, a generalisation over previous approaches. We discuss practical implications of evaluation of network randomness. Our analysis provides insight in that the reprogrammability asymmetry appears to originate from a non-monotonic relationship to algorithmic probability. Our analysis motivates further analysis of the origin and consequences of the aforementioned asymmetries, reprogrammability, and computation.Comment: 30 page

    Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

    Get PDF
    We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.Comment: 15 2-column pages, 20 figures. Forthcoming in Physica A: Statistical Mechanics and its Application
    corecore