1 research outputs found

    Entropy Estimations Using Correlated Symmetric Stable Random Projections

    No full text
    Methods for efficiently estimating Shannon entropy of data streams have important applications in learning, data mining, and network anomaly detections (e.g., the DDoS attacks). For nonnegative data streams, the method of Compressed Counting (CC) [11, 13] based on maximally-skewed stable random projections can provide accurate estimates of the Shannon entropy using small storage. However, CC is no longer applicable when entries of data streams can be below zero, which is a common scenario when comparing two streams. In this paper, we propose an algorithm for entropy estimation in general data streams which allow negative entries. In our method, the Shannon entropy is approximated by the finite difference of two correlated frequency moments estimated from correlated samples of symmetric stable random variables. Interestingly, the estimator for the moment we recommend for entropy estimation barely has bounded variance itself, whereas the common geometric mean estimator (which has bounded higher-order moments) is not sufficient for entropy estimation. Our experiments confirm that this method is able to well approximate the Shannon entropy using small storage.
    corecore