30 research outputs found

    Entropic Inequalities and Marginal Problems

    Full text link
    A marginal problem asks whether a given family of marginal distributions for some set of random variables arises from some joint distribution of these variables. Here we point out that the existence of such a joint distribution imposes non-trivial conditions already on the level of Shannon entropies of the given marginals. These entropic inequalities are necessary (but not sufficient) criteria for the existence of a joint distribution. For every marginal problem, a list of such Shannon-type entropic inequalities can be calculated by Fourier-Motzkin elimination, and we offer a software interface to a Fourier-Motzkin solver for doing so. For the case that the hypergraph of given marginals is a cycle graph, we provide a complete analytic solution to the problem of classifying all relevant entropic inequalities, and use this result to bound the decay of correlations in stochastic processes. Furthermore, we show that Shannon-type inequalities for differential entropies are not relevant for continuous-variable marginal problems; non-Shannon-type inequalities are, both in the discrete and in the continuous case. In contrast to other approaches, our general framework easily adapts to situations where one has additional (conditional) independence requirements on the joint distribution, as in the case of graphical models. We end with a list of open problems. A complementary article discusses applications to quantum nonlocality and contextuality.Comment: 26 pages, 3 figure

    On an Extension Problem for Density Matrices

    Full text link
    We investigate the problem of the existence of a density matrix rho on the product of three Hilbert spaces with given marginals on the pair (1,2) and the pair (2,3). While we do not solve this problem completely we offer partial results in the form of some necessary and some sufficient conditions on the two marginals. The quantum case differs markedly from the classical (commutative) case, where the obvious necessary compatibility condition suffices, namely, trace_1 (rho_{12}) = \trace_3 (rho_{23}).Comment: 12 pages late

    All noncontextuality inequalities for the n-cycle scenario

    Full text link
    The problem of separating classical from quantum correlations is in general intractable and has been solved explicitly only in few cases. In particular, known methods cannot provide general solutions for an arbitrary number of settings. We provide the complete characterization of the classical correlations and the corresponding maximal quantum violations for the case of n >= 4 observables X_0, ...,X_{n-1}, where each consecutive pair {X_i,X_{i+1}}, sum modulo n, is jointly measurable. This generalizes both the Clauser-Horne-Shimony-Holt and the Klyachko-Can-Binicioglu-Shumovsky scenarios, which are the simplest ones for, respectively, locality and noncontextuality. In addition, we provide explicit quantum states and settings with maximal quantum violation and minimal quantum dimension.Comment: 5+3 pages, 4 figures, 11 countries. v3: Published versio

    Systems, environments, and soliton rate equations: A non-Kolmogorovian framework for population dynamics

    Full text link
    Soliton rate equations are based on non-Kolmogorovian models of probability and naturally include autocatalytic processes. The formalism is not widely known but has great unexplored potential for applications to systems interacting with environments. Beginning with links of contextuality to non-Kolmogorovity we introduce the general formalism of soliton rate equations and work out explicit examples of subsystems interacting with environments. Of particular interest is the case of a soliton autocatalytic rate equation coupled to a linear conservative environment, a formal way of expressing seasonal changes. Depending on strength of the system-environment coupling we observe phenomena analogous to hibernation or even complete blocking of decay of a population.Comment: 51 pages, 15 eps figure
    corecore