3 research outputs found

    Entity Linking in 40 Languages using MAG

    Full text link
    A plethora of Entity Linking (EL) approaches has recently been developed. While many claim to be multilingual, the MAG (Multilingual AGDISTIS) approach has been shown recently to outperform the state of the art in multilingual EL on 7 languages. With this demo, we extend MAG to support EL in 40 different languages, including especially low-resources languages such as Ukrainian, Greek, Hungarian, Croatian, Portuguese, Japanese and Korean. Our demo relies on online web services which allow for an easy access to our entity linking approaches and can disambiguate against DBpedia and Wikidata. During the demo, we will show how to use MAG by means of POST requests as well as using its user-friendly web interface. All data used in the demo is available at https://hobbitdata.informatik.uni-leipzig.de/agdistis/Comment: Accepted at ESWC 201

    Template-based Question Answering using Recursive Neural Networks

    Full text link
    We propose a neural network-based approach to automatically learn and classify natural language questions into its corresponding template using recursive neural networks. An obvious advantage of using neural networks is the elimination of the need for laborious feature engineering that can be cumbersome and error-prone. The input question is encoded into a vector representation. The model is trained and evaluated on the LC-QuAD dataset (Large-scale Complex Question Answering Dataset). The LC-QuAD queries are annotated based on 38 unique templates that the model attempts to classify. The resulting model is evaluated against both the LC-QuAD dataset and the 7th Question Answering Over Linked Data (QALD-7) dataset. The recursive neural network achieves template classification accuracy of 0.828 on the LC-QuAD dataset and an accuracy of 0.618 on the QALD-7 dataset. When the top-2 most likely templates were considered the model achieves an accuracy of 0.945 on the LC-QuAD dataset and 0.786 on the QALD-7 dataset. After slot filling, the overall system achieves a macro F-score 0.419 on the LC-QuAD dataset and a macro F-score of 0.417 on the QALD-7 dataset

    Knowledge Graphs for Multilingual Language Translation and Generation

    Full text link
    The Natural Language Processing (NLP) community has recently seen outstanding progress, catalysed by the release of different Neural Network (NN) architectures. Neural-based approaches have proven effective by significantly increasing the output quality of a large number of automated solutions for NLP tasks (Belinkov and Glass, 2019). Despite these notable advancements, dealing with entities still poses a difficult challenge as they are rarely seen in training data. Entities can be classified into two groups, i.e., proper nouns and common nouns. Proper nouns are also known as Named Entities (NE) and correspond to the name of people, organizations, or locations, e.g., John, WHO, or Canada. Common nouns describe classes of objects, e.g., spoon or cancer. Both types of entities can be found in a Knowledge Graph (KG). Recent work has successfully exploited the contribution of KGs in NLP tasks, such as Natural Language Inference (NLI) (KM et al.,2018) and Question Answering (QA) (Sorokin and Gurevych, 2018). Only a few works had exploited the benefits of KGs in Neural Machine Translation (NMT) when the work presented herein began. Additionally, few works had studied the contribution of KGs to Natural Language Generation (NLG) tasks. Moreover, the multilinguality also remained an open research area in these respective tasks (Young et al., 2018). In this thesis, we focus on the use of KGs for machine translation and the generation of texts to deal with the problems caused by entities and consequently enhance the quality of automatically generated texts
    corecore