14 research outputs found

    Entanglement subvolume law for 2D frustration-free spin systems

    Full text link
    Let HH be a frustration-free Hamiltonian describing a 2D grid of qudits with local interactions, a unique ground state, and local spectral gap lower bounded by a positive constant. For any bipartition defined by a vertical cut of length LL running from top to bottom of the grid, we prove that the corresponding entanglement entropy of the ground state of HH is upper bounded by O~(L5/3)\tilde{O}(L^{5/3}). For the special case of a 1D chain, our result provides a new area law which improves upon prior work, in terms of the scaling with qudit dimension and spectral gap. In addition, for any bipartition of the grid into a rectangular region AA and its complement, we show that the entanglement entropy is upper bounded as O~(A5/3)\tilde{O}(|\partial A|^{5/3}) where A\partial A is the boundary of AA. This represents the first subvolume bound on entanglement in frustration-free 2D systems. In contrast with previous work, our bounds depend on the local (rather than global) spectral gap of the Hamiltonian. We prove our results using a known method which bounds the entanglement entropy of the ground state in terms of certain properties of an approximate ground state projector (AGSP). To this end, we construct a new AGSP which is based on a robust polynomial approximation of the AND function and we show that it achieves an improved trade-off between approximation error and entanglement

    Sub-exponential algorithm for 2D frustration-free spin systems with gapped subsystems

    Full text link
    We show that in the setting of the subvolume law of [Anshu, Arad, Gosset '19] for 2D locally gapped frustration-free spin systems there exists a randomized classical algorithm which computes the ground states in sub-exponential time. The running time cannot be improved to polynomial unless SAT can be solved in randomized polynomial time, as even the special case of classical constraint satisfaction problems on the 2D grid is known to be NP-hard

    An improved 1D area law for frustration-free systems

    Full text link
    We present a new proof for the 1D area law for frustration-free systems with a constant gap, which exponentially improves the entropy bound in Hastings' 1D area law, and which is tight to within a polynomial factor. For particles of dimension dd, spectral gap ϵ>0\epsilon>0 and interaction strength of at most JJ, our entropy bound is S_{1D}\le \orderof{1}X^3\log^8 X where X\EqDef(J\log d)/\epsilon. Our proof is completely combinatorial, combining the detectability lemma with basic tools from approximation theory. Incorporating locality into the proof when applied to the 2D case gives an entanglement bound that is at the cusp of being non-trivial in the sense that any further improvement would yield a sub-volume law.Comment: 15 pages, 6 figures. Some small style corrections and updated ref

    An area law for 2D frustration-free spin systems

    Full text link
    We prove that the entanglement entropy of the ground state of a locally gapped frustration-free 2D lattice spin system satisfies an area law with respect to a vertical bipartition of the lattice into left and right regions. We first establish that the ground state projector of any locally gapped frustration-free 1D spin system can be approximated to within error ϵ\epsilon by a degree O(nlog(ϵ1))O(\sqrt{n\log(\epsilon^{-1})}) multivariate polynomial in the interaction terms of the Hamiltonian. This generalizes the optimal bound on the approximate degree of the boolean AND function, which corresponds to the special case of commuting Hamiltonian terms. For 2D spin systems we then construct an approximate ground state projector (AGSP) that employs the optimal 1D approximation in the vicinity of the boundary of the bipartition of interest. This AGSP has sufficiently low entanglement and error to establish the area law using a known technique.Comment: version 2: updated affiliation and added some references. 25 pages, 3 figure

    Entanglement area law for 1D gauge theories and bosonic systems

    Full text link
    We prove an entanglement area law for a class of 1D quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems include bosonic models such as the Hubbard-Holstein model, and both U(1) and SU(2) lattice gauge theories in one spatial dimension. Our proof relies on new results concerning the robustness of the ground state and spectral gap to the truncation of Hilbert space, applied within the approximate ground state projector (AGSP) framework from previous work. In establishing this area law, we develop a system-size independent bound on the expectation value of local observables for Hamiltonians without translation symmetry, which may be of separate interest. Our result provides theoretical justification for using tensor network methods to study the ground state properties of quantum systems with infinite local degrees of freedom

    From communication complexity to an entanglement spread area law in the ground state of gapped local Hamiltonians

    Full text link
    In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an "area law" behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS'14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL'08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.Comment: 29 pages, 1 figur

    Quantum Hamiltonian Complexity

    Full text link
    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via so-called area laws. Our aim here is to provide a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field. As such, we include the following in this survey: (1) The motivations and history of the field, (2) a glossary of condensed matter physics terms explained in computer-science friendly language, (3) overviews of central ideas from condensed matter physics, such as indistinguishable particles, mean field theory, tensor networks, and area laws, and (4) brief expositions of selected computer science-based results in the area. For example, as part of the latter, we provide a novel information theoretic presentation of Bravyi's polynomial time algorithm for Quantum 2-SAT.Comment: v4: published version, 127 pages, introduction expanded to include brief introduction to quantum information, brief list of some recent developments added, minor changes throughou
    corecore