1,624 research outputs found

    Entangled Quantum Clocks for Measuring Proper-Time Difference

    Full text link
    We report that entangled pairs of quantum clocks (non-degenerate quantum bits) can be used as a specialized detector for precisely measuring difference of proper-times that each constituent quantum clock experiences. We describe why the proposed scheme would be more precise in the measurement of proper-time difference than a scheme of two-separate-quantum-clocks. We consider possibilities that the proposed scheme can be used in precision test of the relativity theory.Comment: no correction, 4 pages, RevTe

    Single electron relativistic clock interferometer

    Get PDF
    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.Comment: 9 pages, 4 figure

    General relativistic effects in quantum interference of photons

    Full text link
    Quantum mechanics and general relativity have been extensively and independently confirmed in many experiments. However, the interplay of the two theories has never been tested: all experiments that measured the influence of gravity on quantum systems are consistent with non-relativistic, Newtonian gravity. On the other hand, all tests of general relativity can be described within the framework of classical physics. Here we discuss a quantum interference experiment with single photons that can probe quantum mechanics in curved space-time. We consider a single photon travelling in superposition along two paths in an interferometer, with each arm experiencing a different gravitational time dilation. If the difference in the time dilations is comparable with the photon's coherence time, the visibility of the quantum interference is predicted to drop, while for shorter time dilations the effect of gravity will result only in a relative phase shift between the two arms. We discuss what aspects of the interplay between quantum mechanics and general relativity are probed in such experiments and analyze the experimental feasibility.Comment: 16 pages, new appendix, published versio

    Nonlocal Aspects of a Quantum Wave

    Get PDF
    Various aspects of nonlocality of a quantum wave are discussed. In particular, the question of the possibility of extracting information about the relative phase in a quantum wave is analyzed. It is argued that there is a profound difference in the nonlocal properties of the quantum wave between fermion and boson particles. The phase of the boson quantum state can be found from correlations between results of measurements in separate regions. These correlations are identical to the Einstein-Podolsky-Rosen (EPR) correlations between two entangled systems. An ensemble of results of measurements performed on fermion quantum waves does not exhibit the EPR correlations and the relative phase of fermion quantum waves cannot be found from these results. The existence of a physical variable (the relative phase) which cannot be measured locally is the nonlocality aspect of the quantum wave of a fermion.Comment: 12 page
    • …
    corecore