14 research outputs found

    Construction of equiangular signatures for synchronous CDMA systems

    Get PDF
    Welch bound equality (WBE) signature sequences maximize the uplink sum capacity in direct-spread synchronous code division multiple access (CDMA) systems. WBE sequences have a nice interference invariance property that typically holds only when the system is fully loaded, and, to maintain this property, the signature set must be redesigned and reassigned as the number of active users changes. An additional equiangular constraint on the signature set, however, maintains interference invariance. Finding such signatures requires equiangular side constraints to be imposed on an inverse eigenvalue problem. The paper presents an alternating projection algorithm that can design WBE sequences that satisfy equiangular side constraints. The proposed algorithm can be used to find Grassmannian frames as well as equiangular tight frames. Though one projection is onto a closed, but non-convex, set, it is shown that this algorithm converges to a fixed point, and these fixed points are partially characterized

    Optimal CDMA signatures: a finite-step approach

    Get PDF
    A description of optimal sequences for direct-sequence code division multiple access is a byproduct of recent characterizations of the sum capacity. The paper restates the sequence design problem as an inverse singular value problem and shows that it can be solved with finite-step algorithms from matrix analysis. Relevant algorithms are reviewed and a new one-sided construction is proposed that obtains the sequences directly instead of computing the Gram matrix of the optimal signatures

    Finite-step algorithms for constructing optimal CDMA signature sequences

    Get PDF
    A description of optimal sequences for direct-spread code-division multiple access (DS-CDMA) is a byproduct of recent characterizations of the sum capacity. This paper restates the sequence design problem as an inverse singular value problem and shows that the problem can be solved with finite-step algorithms from matrix theory. It proposes a new one-sided algorithm that is numerically stable and faster than previous methods

    Method for Minimizing Total Generalized Squared Correlation of Synchronous DS-CDMA Signature Sequence Sets in Multipath Channels

    Get PDF
    We characterize the Total Generalized Squared Correlation (TGSC) for a given signature sequence set used in uplink synchronous code division multiple access (S-CDMA) when channel state information is known perfectly at both transmitter and receiver. We give a definition of the TGSC based on the eigenvalues of Gram matrix associated to signature sequences set for multipath channels in the presence of the colored noise. Total Squared Correlation (TSC) and Total Weighted Squared Correlation (TWSC) measures are particular cases of TGSC. We present a method for minimizing TGSC (TSC, TWSC) in multipath channels and in the presence of the colored noise. Numerical results for overloaded synchronous CDMA systems are presented in order to support our analysis

    Finite-Step Algorithms for Constructing Optimal CDMA Signature Sequences

    Full text link

    Designing structured tight frames via an alternating projection method

    Get PDF
    Tight frames, also known as general Welch-bound- equality sequences, generalize orthonormal systems. Numerous applications - including communications, coding, and sparse approximation- require finite-dimensional tight frames that possess additional structural properties. This paper proposes an alternating projection method that is versatile enough to solve a huge class of inverse eigenvalue problems (IEPs), which includes the frame design problem. To apply this method, one needs only to solve a matrix nearness problem that arises naturally from the design specifications. Therefore, it is the fast and easy to develop versions of the algorithm that target new design problems. Alternating projection will often succeed even if algebraic constructions are unavailable. To demonstrate that alternating projection is an effective tool for frame design, the paper studies some important structural properties in detail. First, it addresses the most basic design problem: constructing tight frames with prescribed vector norms. Then, it discusses equiangular tight frames, which are natural dictionaries for sparse approximation. Finally, it examines tight frames whose individual vectors have low peak-to-average-power ratio (PAR), which is a valuable property for code-division multiple-access (CDMA) applications. Numerical experiments show that the proposed algorithm succeeds in each of these three cases. The appendices investigate the convergence properties of the algorithm
    corecore