7,448 research outputs found

    Sentiment Analysis using an ensemble of Feature Selection Algorithms

    Get PDF
    To determine the opinion of any person experiencing any services or buying any product, the usage of Sentiment Analysis, a continuous research in the field of text mining, is a common practice. It is a process of using computation to identify and categorize opinions expressed in a piece of text. Individuals post their opinion via reviews, tweets, comments or discussions which is our unstructured information. Sentiment analysis gives a general conclusion of audits which benefit clients, individuals or organizations for decision making. The primary point of this paper is to perform an ensemble approach on feature reduction methods identified with natural language processing and performing the analysis based on the results. An ensemble approach is a process of combining two or more methodologies. The feature reduction methods used are Principal Component Analysis (PCA) for feature extraction and Pearson Chi squared statistical test for feature selection. The fundamental commitment of this paper is to experiment whether combined use of cautious feature determination and existing classification methodologies can yield better accuracy

    TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification

    Full text link
    This paper describes the participation of the team "TwiSE" in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely "Sentiment Analysis in Twitter" for which we implemented sentiment classification systems for subtasks A, B, C and D. Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.\footnote{We make the code available for research purposes at \url{https://github.com/balikasg/SemEval2016-Twitter\_Sentiment\_Evaluation}.

    High-Level Concepts for Affective Understanding of Images

    Full text link
    This paper aims to bridge the affective gap between image content and the emotional response of the viewer it elicits by using High-Level Concepts (HLCs). In contrast to previous work that relied solely on low-level features or used convolutional neural network (CNN) as a black-box, we use HLCs generated by pretrained CNNs in an explicit way to investigate the relations/associations between these HLCs and a (small) set of Ekman's emotional classes. As a proof-of-concept, we first propose a linear admixture model for modeling these relations, and the resulting computational framework allows us to determine the associations between each emotion class and certain HLCs (objects and places). This linear model is further extended to a nonlinear model using support vector regression (SVR) that aims to predict the viewer's emotional response using both low-level image features and HLCs extracted from images. These class-specific regressors are then assembled into a regressor ensemble that provide a flexible and effective predictor for predicting viewer's emotional responses from images. Experimental results have demonstrated that our results are comparable to existing methods, with a clear view of the association between HLCs and emotional classes that is ostensibly missing in most existing work
    • …
    corecore