145 research outputs found

    The outlining of agricultural plots based on spatiotemporal consensus segmentation

    Get PDF
    Producción CientíficaThe outlining of agricultural land is an important task for obtaining primary information used to create agricultural policies, estimate subsidies and agricultural insurance, and update agricultural geographical databases, among others. Most of the automatic and semi-automatic methods used for outlining agricultural plots using remotely sensed imagery are based on image segmentation. However, these approaches are usually sensitive to intra-plot variability and depend on the selection of the correct parameters, resulting in a poor performance due to the variability in the shape, size, and texture of the agricultural landscapes. In this work, a new methodology based on consensus image segmentation for outlining agricultural plots is presented. The proposed methodology combines segmentation at different scales—carried out using a superpixel (SP) method—and different dates from the same growing season to obtain a single segmentation of the agricultural plots. A visual and numerical comparison of the results provided by the proposed methodology with field-based data (ground truth) shows that the use of segmentation consensus is promising for outlining agricultural plots in a semi-supervised manner.Agencia Estatal de Investigación (AEI) y Fondo Europeo de Desarrollo Regional (FEDER) a través del proyecto ARTeMISat-2: Procesamiento Avanzado de Datos de Teledetección para el Seguimiento y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables (project CTM2016-77733-R)Centro de Investigaciones Hídricas para la Agricultura y la Minería (project CONICYT–FONDAP–1513001)Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (project VA026P17

    Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks

    Get PDF
    Harmful algal blooms (HABs) and the consequent contamination of shellfish are complex processes depending on several biotic and abiotic variables, turning prediction of shellfish contamination into a challenging task. Not only the information of interest is dispersed among multiple sources, but also the complex temporal relationships between the time-series variables require advanced machine methods to model such relationships. In this study, multiple time-series variables measured in Portuguese shellfish production areas were used to forecast shellfish contamination by diarrhetic she-llfish poisoning (DSP) toxins one to four weeks in advance. These time series included DSP con-centration in mussels (Mytilus galloprovincialis), toxic phytoplankton cell counts, meteorological, and remotely sensed oceanographic variables. Several data pre-processing and feature engineering methods were tested, as well as multiple autoregressive and artificial neural network (ANN) models. The best results regarding the mean absolute error of prediction were obtained for a bivariate long short-term memory (LSTM) neural network based on biotoxin and toxic phytoplankton measurements, with higher accuracy for short-term forecasting horizons. When evaluating all ANNs model ability to predict the contamination state (below or above the regulatory limit for contamination) and changes to this state, multilayer perceptrons (MLP) and convolutional neural networks (CNN) yielded improved predictive performance on a case-by-case basis. These results show the possibility of extracting relevant information from time-series data from multiple sources which are predictive of DSP contamination in mussels, therefore placing ANNs as good candidate models to assist the production sector in anticipating harvesting interdictions and mitigating economic losses.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).info:eu-repo/semantics/publishedVersio

    A new feature extraction approach based on non linear source separation

    Get PDF
    A new feature extraction approach is proposed in this paper to improve the classification performance in remotely sensed data. The proposed method is based on a primary sources subset (PSS) obtained by nonlinear transform that provides lower space for land pattern recognition. First, the underlying sources are approximated using multilayer neural networks. Given that, Bayesian inferences update unknown sources’ knowledge and model parameters with information’s data. Then, a source dimension minimizing technique is adopted to provide more efficient land cover description. The support vector machine (SVM) scheme is developed by using feature extraction. The experimental results on real multispectral imagery demonstrates that the proposed approach ensures efficient feature extraction by using several descriptors for texture identification and multiscale analysis. In a pixel based approach, the reduced PSS space improved the overall classification accuracy by 13% and reaches 82%. Using texture and multi resolution descriptors, the overall accuracy is 75.87% for the original observations, while using the reduced source space the overall accuracy reaches 81.67% when using jointly wavelet and Gabor transform and 86.67% when using Gabor transform. Thus, the source space enhanced the feature extraction process and allow more land use discrimination than the multispectral observations

    Deep Learning for Time Series Classification and Extrinsic Regression: A Current Survey

    Full text link
    Time Series Classification and Extrinsic Regression are important and challenging machine learning tasks. Deep learning has revolutionized natural language processing and computer vision and holds great promise in other fields such as time series analysis where the relevant features must often be abstracted from the raw data but are not known a priori. This paper surveys the current state of the art in the fast-moving field of deep learning for time series classification and extrinsic regression. We review different network architectures and training methods used for these tasks and discuss the challenges and opportunities when applying deep learning to time series data. We also summarize two critical applications of time series classification and extrinsic regression, human activity recognition and satellite earth observation

    A Machine Learning Approach to Sentinel-3 Feature Extraction In The Context Of Harmful Algal Blooms

    Get PDF
    Harmful Algal Blooms (HAB) are typically described as blooms of phytoplankton species that can not only cause harm to the environment but also humans. Some species that form these blooms can release biotoxins, which accumulate in shellfish [1]. When humans consume contaminated shellfish, it can cause adverse health problems [2]–[4]. Due to the associated risk of contamination, shellfisheries are forced to close, sometimes for months, leading to significant economic losses. Although microscopes enable toxic species identification, and bioassays enable biotoxin identification and quantification, these methods are impractical for continuous monitoring since they require recurrent in situ data sampling, followed by laboratory analysis. Chlorophyll a is a pigment common to almost all marine phytoplankton groups. It has a spectral signature that enables it to be detectable by remote satellites that capture water-leaving radiance [5]. Remote sensing can be very useful since it allows us to take synoptic measurements of large sea areas [6]. Several machine learning algorithms have been researched to detect or forecast algal biomass or HAB presence [7]–[10]. However, the application of remotely sensed images to detect and forecast biotoxin concentration seems relatively unexplored. Given this problem, two datasets with Sentinel-3 imagery patches were created, from along the west coastal region of Portugal, which differ in size and the preprocessing applied. We assessed the application of Machine Learning (ML) models to extract informative features from the datasets. The models were evaluated quantitatively and qualitatively. The qualitative analysis demonstrated how the features extracted by the models seem to be consistent with features extracted for downstream tasks in the literature, suggesting the features retain helpful information. However, at this time, further work Is required to determine whether the feature can be helpful in the task of biotoxin concentration forecasting.Um Harmful Algal Bloom (HAB) é tipicamente descrito como sendo a proliferação de espécies de fitoplâncton que podem causar danos não só ao ambiente, mas também aos humanos. Algumas espécies que formam HABs podem libertar biotoxinas, que se acumulam nos moluscos [1]. Quando o ser humano consome moluscos contaminados, pode causar problemas de saúde adversos [2]–[4]. Devido ao risco associado de contaminação, as áreas de exploração de bivalves são forçadas a fechar, por vezes durante meses, levando a perdas económicas significantes. A clorofila a é um pigmento comum a quase todos os grupos de fitoplâncton marinho e tem uma assinatura espectral que lhe permite ser detectável por satélites remotos que captam a radiância que sai da água do mar [5]. A detecção remota pode ser muito útil, uma vez que nos permite fazer medições sinópticas de grandes áreas marítimas [6]. Foram pesquisados vários modelos de aprendizagem automática para detectar ou prever a presença de biomassa algal ou HAB [7]–[10]. No entanto, a utilização de imagens de detecção remota para detectar e prever a concentração de biotoxinas parece relativamente inexplorada. Dado este problema, foram criados dois conjuntos de dados com patches de imagens do satélite Sentinel-3 ao longo da região costeira ocidental de Portugal, que diferem em tamanho e no pré-processamento aplicado. Avaliámos diferentes modelos de aprendizagem automática para extrair características informativas dos conjuntos de dados. Os modelos foram avaliados quantitativa e qualitativamente. A análise qualitativa demonstrou como a informação extraída pelos modelos parecem ser consistentes com a extraída na literatura para informar outros modelos, sugerindo que as características retêm informação útil. Contudo, neste momento, é necessário trabalho futuro para determinar se a informação pode ser útil na tarefa de previsão da concentração de biotoxinas

    Neural network-based urban change monitoring with deep-temporal multispectral and SAR remote sensing data

    Get PDF
    Remote-sensing-driven urban change detection has been studied in many ways for decades for a wide field of applications, such as understanding socio-economic impacts, identifying new settlements, or analyzing trends of urban sprawl. Such kinds of analyses are usually carried out manually by selecting high-quality samples that binds them to small-scale scenarios, either temporarily limited or with low spatial or temporal resolution. We propose a fully automated method that uses a large amount of available remote sensing observations for a selected period without the need to manually select samples. This enables continuous urban monitoring in a fully automated process. Furthermore, we combine multispectral optical and synthetic aperture radar (SAR) data from two eras as two mission pairs with synthetic labeling to train a neural network for detecting urban changes and activities. As pairs, we consider European Remote Sensing (ERS-1/2) and Landsat 5 Thematic Mapper (TM) for 1991-2011 and Sentinel 1 and 2 for 2017-2021. For every era, we use three different urban sites-Limassol, Rotterdam, and Liege-with at least 500 km(2) each, and deep observation time series with hundreds and up to over a thousand of samples. These sites were selected to represent different challenges in training a common neural network due to atmospheric effects, different geographies, and observation coverage. We train one model for each of the two eras using synthetic but noisy labels, which are created automatically by combining state-of-the-art methods, without the availability of existing ground truth data. To combine the benefit of both remote sensing types, the network models are ensembles of optical- and SAR-specialized sub-networks. We study the sensitivity of urban and impervious changes and the contribution of optical and SAR data to the overall solution. Our implementation and trained models are available publicly to enable others to utilize fully automated continuous urban monitoring.Web of Science1315art. no. 300

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN)

    Get PDF
    Understanding the use of current land cover, along with monitoring change over time, is vital for agronomists and agricultural agencies responsible for land management. The increasing spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2, creates new possibilities for researchers to use freely available multi-spectral optical images, with decametric spatial resolution and more frequent revisits for remote sensing applications such as land cover and crop classification (LC&CC), agricultural monitoring and management, environment monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel based and object-based. However, it is still challenging when more classes of agricultural crops are considered at a massive scale. In this paper, a novel and optimal deep learning model for pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of central north part of Italy, which has diverse agricultural system dominated by economic crop types. The proposed methodology is capable of automated feature extraction by learning time correlation of multiple images, which reduces manual feature engineering and modeling crop phenological stages. Fifteen classes, including major agricultural crops, were considered in this study. We also tested other widely used traditional machine learning algorithms for comparison such as support vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods. This study showed that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for multi-temporal classification tasks

    Developing a remote sensing system based on X-band radar technology for coastal morphodynamics study

    Get PDF
    New data processing techniques are proposed for the assessment of scopes and limitations from radar-derived sea state parameters, coastline evolution and water depth estimates. Most of the raised research is focused on Colombian Caribbean coast and the Western Mediterranean Sea. First, a novel procedure to mitigate shadowing in radar images is proposed. The method compensates distortions introduced by the radar acquisition process and the power decay of the radar signal along range applying image enhancement techniques through a couple of pre-processing steps based on filtering and interpolation. Results reveal that the proposed methodology reproduces with high accuracy the sea state parameters in nearshore areas. The improvement resulting from the proposed method is assessed in a coral reef barrier, introducing a completely novel use for X-Band radar in coastal environments. So far, wave energy dissipation on a coral reef barrier has been studied by a few in-situ sensors placed in a straight line, perpendicular to the coastline, but never been described using marine radars. In this context, marine radar images are used to describe prominent features of coral reefs, including the delineation of reef morphological structure, wave energy dissipation and wave transformation processes in the lagoon of San Andres Island barrier-reef system. Results show that reef attenuates incident waves by approximately 75% due to both frictional and wave breaking dissipation, with an equivalent bottom roughness of 0.20 m and a wave friction factor of 0.18. These parameters are comparable with estimates reported in other shallow coral reef lagoons as well as at meadow canopies, obtained using in-situ measurements of wave parameters.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    Neural network studies of lithofacies classification

    Get PDF
    corecore