30,186 research outputs found

    Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-tuning

    Get PDF
    Deep neural networks require a large amount of labeled training data during supervised learning. However, collecting and labeling so much data might be infeasible in many cases. In this paper, we introduce a source-target selective joint fine-tuning scheme for improving the performance of deep learning tasks with insufficient training data. In this scheme, a target learning task with insufficient training data is carried out simultaneously with another source learning task with abundant training data. However, the source learning task does not use all existing training data. Our core idea is to identify and use a subset of training images from the original source learning task whose low-level characteristics are similar to those from the target learning task, and jointly fine-tune shared convolutional layers for both tasks. Specifically, we compute descriptors from linear or nonlinear filter bank responses on training images from both tasks, and use such descriptors to search for a desired subset of training samples for the source learning task. Experiments demonstrate that our selective joint fine-tuning scheme achieves state-of-the-art performance on multiple visual classification tasks with insufficient training data for deep learning. Such tasks include Caltech 256, MIT Indoor 67, Oxford Flowers 102 and Stanford Dogs 120. In comparison to fine-tuning without a source domain, the proposed method can improve the classification accuracy by 2% - 10% using a single model.Comment: To appear in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval

    Full text link
    This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis
    • …
    corecore