427,040 research outputs found

    Statistical Mechanics of Time Domain Ensemble Learning

    Full text link
    Conventional ensemble learning combines students in the space domain. On the other hand, in this paper we combine students in the time domain and call it time domain ensemble learning. In this paper, we analyze the generalization performance of time domain ensemble learning in the framework of online learning using a statistical mechanical method. We treat a model in which both the teacher and the student are linear perceptrons with noises. Time domain ensemble learning is twice as effective as conventional space domain ensemble learning.Comment: 10 pages, 10 figure

    Analysis of ensemble learning using simple perceptrons based on online learning theory

    Full text link
    Ensemble learning of KK nonlinear perceptrons, which determine their outputs by sign functions, is discussed within the framework of online learning and statistical mechanics. One purpose of statistical learning theory is to theoretically obtain the generalization error. This paper shows that ensemble generalization error can be calculated by using two order parameters, that is, the similarity between a teacher and a student, and the similarity among students. The differential equations that describe the dynamical behaviors of these order parameters are derived in the case of general learning rules. The concrete forms of these differential equations are derived analytically in the cases of three well-known rules: Hebbian learning, perceptron learning and AdaTron learning. Ensemble generalization errors of these three rules are calculated by using the results determined by solving their differential equations. As a result, these three rules show different characteristics in their affinity for ensemble learning, that is ``maintaining variety among students." Results show that AdaTron learning is superior to the other two rules with respect to that affinity.Comment: 30 pages, 17 figure
    corecore