697 research outputs found

    Enriching Rare Word Representations in Neural Language Models by Embedding Matrix Augmentation

    Full text link
    The neural language models (NLM) achieve strong generalization capability by learning the dense representation of words and using them to estimate probability distribution function. However, learning the representation of rare words is a challenging problem causing the NLM to produce unreliable probability estimates. To address this problem, we propose a method to enrich representations of rare words in pre-trained NLM and consequently improve its probability estimation performance. The proposed method augments the word embedding matrices of pre-trained NLM while keeping other parameters unchanged. Specifically, our method updates the embedding vectors of rare words using embedding vectors of other semantically and syntactically similar words. To evaluate the proposed method, we enrich the rare street names in the pre-trained NLM and use it to rescore 100-best hypotheses output from the Singapore English speech recognition system. The enriched NLM reduces the word error rate by 6% relative and improves the recognition accuracy of the rare words by 16% absolute as compared to the baseline NLM.Comment: 5 pages, 2 figures, accepted to INTERSPEECH 201

    MINER: Improving Out-of-Vocabulary Named Entity Recognition from an Information Theoretic Perspective

    Full text link
    NER model has achieved promising performance on standard NER benchmarks. However, recent studies show that previous approaches may over-rely on entity mention information, resulting in poor performance on out-of-vocabulary (OOV) entity recognition. In this work, we propose MINER, a novel NER learning framework, to remedy this issue from an information-theoretic perspective. The proposed approach contains two mutual information-based training objectives: i) generalizing information maximization, which enhances representation via deep understanding of context and entity surface forms; ii) superfluous information minimization, which discourages representation from rote memorizing entity names or exploiting biased cues in data. Experiments on various settings and datasets demonstrate that it achieves better performance in predicting OOV entities

    Smooth inverse frequency based text data selection for medical dictation

    Get PDF
    Under-resourced domain problem is significant in automatic speech recognition, especially in small languages such as Hungarian or in fields where data is often confidential such as finance and medicine. We introduce a method using word embedding and smooth inverse frequency (SIF) based distance measurement to filter public domain web corpora. The selection for (medical) domain matching documents can be scaled. The resulted text is used to train an augmented language model for a medical dictation system. We show that using the appropriately scaled selection leads to optimal performance of the ASR system over the baselines where no data augmentation was applied or all the augmentation data was added

    Character-level and syntax-level models for low-resource and multilingual natural language processing

    Get PDF
    There are more than 7000 languages in the world, but only a small portion of them benefit from Natural Language Processing resources and models. Although languages generally present different characteristics, “cross-lingual bridges” can be exploited, such as transliteration signals and word alignment links. Such information, together with the availability of multiparallel corpora and the urge to overcome language barriers, motivates us to build models that represent more of the world’s languages. This thesis investigates cross-lingual links for improving the processing of low-resource languages with language-agnostic models at the character and syntax level. Specifically, we propose to (i) use orthographic similarities and transliteration between Named Entities and rare words in different languages to improve the construction of Bilingual Word Embeddings (BWEs) and named entity resources, and (ii) exploit multiparallel corpora for projecting labels from high- to low-resource languages, thereby gaining access to weakly supervised processing methods for the latter. In the first publication, we describe our approach for improving the translation of rare words and named entities for the Bilingual Dictionary Induction (BDI) task, using orthography and transliteration information. In our second work, we tackle BDI by enriching BWEs with orthography embeddings and a number of other features, using our classification-based system to overcome script differences among languages. The third publication describes cheap cross-lingual signals that should be considered when building mapping approaches for BWEs since they are simple to extract, effective for bootstrapping the mapping of BWEs, and overcome the failure of unsupervised methods. The fourth paper shows our approach for extracting a named entity resource for 1340 languages, including very low-resource languages from all major areas of linguistic diversity. We exploit parallel corpus statistics and transliteration models and obtain improved performance over prior work. Lastly, the fifth work models annotation projection as a graph-based label propagation problem for the part of speech tagging task. Part of speech models trained on our labeled sets outperform prior work for low-resource languages like Bambara (an African language spoken in Mali), Erzya (a Uralic language spoken in Russia’s Republic of Mordovia), Manx (the Celtic language of the Isle of Man), and Yoruba (a Niger-Congo language spoken in Nigeria and surrounding countries)
    • …
    corecore