1,065 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Surrogate-assisted parallel tempering for Bayesian neural learning

    Full text link
    Due to the need for robust uncertainty quantification, Bayesian neural learning has gained attention in the era of deep learning and big data. Markov Chain Monte-Carlo (MCMC) methods typically implement Bayesian inference which faces several challenges given a large number of parameters, complex and multimodal posterior distributions, and computational complexity of large neural network models. Parallel tempering MCMC addresses some of these limitations given that they can sample multimodal posterior distributions and utilize high-performance computing. However, certain challenges remain given large neural network models and big data. Surrogate-assisted optimization features the estimation of an objective function for models which are computationally expensive. In this paper, we address the inefficiency of parallel tempering MCMC for large-scale problems by combining parallel computing features with surrogate assisted likelihood estimation that describes the plausibility of a model parameter value, given specific observed data. Hence, we present surrogate-assisted parallel tempering for Bayesian neural learning for simple to computationally expensive models. Our results demonstrate that the methodology significantly lowers the computational cost while maintaining quality in decision making with Bayesian neural networks. The method has applications for a Bayesian inversion and uncertainty quantification for a broad range of numerical models.Comment: Engineering Applications of Artificial Intelligenc
    corecore