13,905 research outputs found

    A Study on Techniques and Challenges in Sign Language Translation

    Get PDF
    Sign Language Translation (SLT) plays a pivotal role in enabling effective communication for the Deaf and Hard of Hearing (DHH) community. This review delves into the state-of-the-art techniques and methodologies in SLT, focusing on its significance, challenges, and recent advancements. The review provides a comprehensive analysis of various SLT approaches, ranging from rule-based systems to deep learning models, highlighting their strengths and limitations. Datasets specifically tailored for SLT research are explored, shedding light on the diversity and complexity of Sign Languages across the globe. The review also addresses critical issues in SLT, such as the expressiveness of generated signs, facial expressions, and non-manual signals. Furthermore, it discusses the integration of SLT into assistive technologies and educational tools, emphasizing the transformative potential in enhancing accessibility and inclusivity. Finally, the review outlines future directions, including the incorporation of multimodal inputs and the imperative need for co-creation with the Deaf community, paving the way for more accurate, expressive, and culturally sensitive Sign Language Generation systems

    TermEval: an automatic metric for evaluating terminology translation in MT

    Get PDF
    Terminology translation plays a crucial role in domain-specific machine translation (MT). Preservation of domain-knowledge from source to target is arguably the most concerning factor for the customers in translation industry, especially for critical domains such as medical, transportation, military, legal and aerospace. However, evaluation of terminology translation, despite its huge importance in the translation industry, has been a less examined area in MT research. Term translation quality in MT is usually measured with domain experts, either in academia or industry. To the best of our knowledge, as of yet there is no publicly available solution to automatically evaluate terminology translation in MT. In particular, manual intervention is often needed to evaluate terminology translation in MT, which, by nature, is a time-consuming and highly expensive task. In fact, this is unimaginable in an industrial setting where customised MT systems are often needed to be updated for many reasons (e.g. availability of new training data or leading MT techniques). Hence, there is a genuine need to have a faster and less expensive solution to this problem, which could aid the end-users to instantly identify term translation problems in MT. In this study, we propose an automatic evaluation metric, TermEval, for evaluating terminology translation in MT. To the best of our knowledge, there is no gold-standard dataset available for measuring terminology translation quality in MT. In the absence of gold standard evaluation test set, we semi-automatically create a gold-standard dataset from English--Hindi judicial domain parallel corpus. We trained state-of-the-art phrase-based SMT (PB-SMT) and neural MT (NMT) models on two translation directions: English-to-Hindi and Hindi-to-English, and use TermEval to evaluate their performance on terminology translation over the created gold standard test set. In order to measure the correlation between TermEval scores and human judgments, translations of each source terms (of the gold standard test set) is validated with human evaluator. High correlation between TermEval and human judgements manifests the effectiveness of the proposed terminology translation evaluation metric. We also carry out comprehensive manual evaluation on terminology translation and present our observations

    Joint Dropout: Improving Generalizability in Low-Resource Neural Machine Translation through Phrase Pair Variables

    Full text link
    Despite the tremendous success of Neural Machine Translation (NMT), its performance on low-resource language pairs still remains subpar, partly due to the limited ability to handle previously unseen inputs, i.e., generalization. In this paper, we propose a method called Joint Dropout, that addresses the challenge of low-resource neural machine translation by substituting phrases with variables, resulting in significant enhancement of compositionality, which is a key aspect of generalization. We observe a substantial improvement in translation quality for language pairs with minimal resources, as seen in BLEU and Direct Assessment scores. Furthermore, we conduct an error analysis, and find Joint Dropout to also enhance generalizability of low-resource NMT in terms of robustness and adaptability across different domainsComment: Accepted at MT Summit 202

    Joint Dropout: Improving Generalizability in Low-Resource Neural Machine Translation through Phrase Pair Variables

    Get PDF
    Despite the tremendous success of Neural Machine Translation (NMT), its performance on low- resource language pairs still remains subpar, partly due to the limited ability to handle previously unseen inputs, i.e., generalization. In this paper, we propose a method called Joint Dropout, that addresses the challenge of low-resource neural machine translation by substituting phrases with variables, resulting in significant enhancement of compositionality, which is a key aspect of generalization. We observe a substantial improvement in translation quality for language pairs with minimal resources, as seen in BLEU and Direct Assessment scores. Furthermore, we conduct an error analysis, and find Joint Dropout to also enhance generalizability of low-resource NMT in terms of robustness and adaptability across different domains

    Joint Dropout: Improving Generalizability in Low-Resource Neural Machine Translation through Phrase Pair Variables

    Get PDF
    Despite the tremendous success of Neural Machine Translation (NMT), its performance on low- resource language pairs still remains subpar, partly due to the limited ability to handle previously unseen inputs, i.e., generalization. In this paper, we propose a method called Joint Dropout, that addresses the challenge of low-resource neural machine translation by substituting phrases with variables, resulting in significant enhancement of compositionality, which is a key aspect of generalization. We observe a substantial improvement in translation quality for language pairs with minimal resources, as seen in BLEU and Direct Assessment scores. Furthermore, we conduct an error analysis, and find Joint Dropout to also enhance generalizability of low-resource NMT in terms of robustness and adaptability across different domains
    corecore