38 research outputs found

    Generalized Sparse Covariance-based Estimation

    Full text link
    In this work, we extend the sparse iterative covariance-based estimator (SPICE), by generalizing the formulation to allow for different norm constraints on the signal and noise parameters in the covariance model. For a given norm, the resulting extended SPICE method enjoys the same benefits as the regular SPICE method, including being hyper-parameter free, although the choice of norms are shown to govern the sparsity in the resulting solution. Furthermore, we show that solving the extended SPICE method is equivalent to solving a penalized regression problem, which provides an alternative interpretation of the proposed method and a deeper insight on the differences in sparsity between the extended and the original SPICE formulation. We examine the performance of the method for different choices of norms, and compare the results to the original SPICE method, showing the benefits of using the extended formulation. We also provide two ways of solving the extended SPICE method; one grid-based method, for which an efficient implementation is given, and a gridless method for the sinusoidal case, which results in a semi-definite programming problem

    LFM based Wideband DOA Estimation using Deep Neural Network at Low SNR

    Get PDF
    This work focuses on deep learning-based wideband direction-of-arrival (DoA) estimation for a wideband in particular LFM in case of extreme noise. We propose a convolutional neural network (CNN) that utilizes the correlation matrix to estimate and trained using multi-channel data in low SNR conditions. By using a systematic approach and treating the problem as a way to identify multiple possible DoAs, the CNN is trained to predict DoAs under different SNR conditions. This allows the CNN to accurately estimate the directions from which signals are coming, regardless of the level of noise in the environment. The architecture proposed exhibits robustness to noise, works effectively with a small number of snapshots, and achieves high resolution in angle estimation. Experimental findings demonstrate notable enhancements in performance under low SNR conditions when compared to existing methods, without the need for parameter tuning for correlated and uncorrelated sources. The enhanced robustness of our solution has broad applications in various fields, including wireless array sensors, acoustic microphones, and sonars
    corecore