4,875 research outputs found

    Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin

    Get PDF
    Somatostatin (SST) is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. SST's actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5). SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1) is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin's inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments

    Methionine Adenosyltransferase 1a (MAT1A) Enhances Cell Survival During Chemotherapy Treatment and is Associated with Drug Resistance in Bladder Cancer PDX Mice.

    Get PDF
    Bladder cancer is among the top ten most common cancers, with about ~380,000 new cases and ~150,000 deaths per year worldwide. Tumor relapse following chemotherapy treatment has long been a significant challenge towards completely curing cancer. We have utilized a patient-derived bladder cancer xenograft (PDX) platform to characterize molecular mechanisms that contribute to relapse following drug treatment in advanced bladder cancer. Transcriptomic profiling of bladder cancer xenograft tumors by RNA-sequencing analysis, before and after relapse, following a 21-day cisplatin/gemcitabine drug treatment regimen identified methionine adenosyltransferase 1a (MAT1A) as one of the significantly upregulated genes following drug treatment. Survey of patient tumor sections confirmed elevated levels of MAT1A in individuals who received chemotherapy. Overexpression of MAT1A in 5637 bladder cancer cells increased tolerance to gemcitabine and stalled cell proliferation rates, suggesting MAT1A upregulation as a potential mechanism by which bladder cancer cells persist in a quiescent state to evade chemotherapy

    Differentiation Therapy Targeting the β-Catenin/CBP Interaction in Pancreatic Cancer.

    Get PDF
    BACKGROUND:Although canonical Wnt signaling is known to promote tumorigenesis in pancreatic ductal adenocarcinoma (PDAC), a cancer driven principally by mutant K-Ras, the detailed molecular mechanisms by which the Wnt effector β-catenin regulates such tumorigenesis are largely unknown. We have previously demonstrated that β-catenin's differential usage of the Kat3 transcriptional coactivator cyclic AMP-response element binding protein-binding protein (CBP) over its highly homologous coactivator p300 increases self-renewal and suppresses differentiation in other types of cancer. AIM/METHODS:To investigate Wnt-mediated carcinogenesis in PDAC, we have used the specific small molecule CBP/β-catenin antagonist, ICG-001, which our lab identified and has extensively characterized, to examine its effects in human pancreatic cancer cells and in both an orthotopic mouse model and a human patient-derived xenograft (PDX) model of PDAC. RESULTS/CONCLUSION:We report for the first time that K-Ras activation increases the CBP/β-catenin interaction in pancreatic cancer; and that ICG-001 specific antagonism of the CBP/β-catenin interaction sensitizes pancreatic cancer cells and tumors to gemcitabine treatment. These effects were associated with increases in the expression of let-7a microRNA; suppression of K-Ras and survivin; and the elimination of drug-resistant cancer stem/tumor-initiating cells

    Monotonicity and enclosure methods for the p-Laplace equation

    Get PDF
    We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the pp-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.Comment: 18 page

    Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas.

    Full text link
    MYC-driven lymphomas, especially those with concurrent MYC and BCL2 dysregulation, are currently a challenge in clinical practice due to rapid disease progression, resistance to standard chemotherapy, and high risk of refractory disease. MYC plays a central role by coordinating hyperactive protein synthesis with upregulated transcription in order to support rapid proliferation of tumor cells. Translation initiation inhibitor rocaglates have been identified as the most potent drugs in MYC-driven lymphomas as they efficiently inhibit MYC expression and tumor cell viability. We found that this class of compounds can overcome eIF4A abundance by stabilizing target mRNA-eIF4A interaction that directly prevents translation. Proteome-wide quantification demonstrated selective repression of multiple critical oncoproteins in addition to MYC in B-cell lymphoma including NEK2, MCL1, AURKA, PLK1, and several transcription factors that are generally considered undruggable. Finally, (-)-SDS-1-021, the most promising synthetic rocaglate, was confirmed to be highly potent as a single agent, and displayed significant synergy with the BCL2 inhibitor ABT199 in inhibiting tumor growth and survival in primary lymphoma cells in vitro and in patient-derived xenograft mouse models. Overall, our findings support the strategy of using rocaglates to target oncoprotein synthesis in MYC-driven lymphomas.P30 CA036727 - NCI NIH HHS; R24 GM111625 - NIGMS NIH HHS; R35 GM118173 - NIGMS NIH HHS; LB506 - Nebraska Department of Health and Human Services (Nebraska DHHS)Accepted manuscriptSupporting documentatio
    corecore