3,868 research outputs found

    Clustering documents with active learning using Wikipedia

    Get PDF
    Wikipedia has been applied as a background knowledge base to various text mining problems, but very few attempts have been made to utilize it for document clustering. In this paper we propose to exploit the semantic knowledge in Wikipedia for clustering, enabling the automatic grouping of documents with similar themes. Although clustering is intrinsically unsupervised, recent research has shown that incorporating supervision improves clustering performance, even when limited supervision is provided. The approach presented in this paper applies supervision using active learning. We first utilize Wikipedia to create a concept-based representation of a text document, with each concept associated to a Wikipedia article. We then exploit the semantic relatedness between Wikipedia concepts to find pair-wise instance-level constraints for supervised clustering, guiding clustering towards the direction indicated by the constraints. We test our approach on three standard text document datasets. Empirical results show that our basic document representation strategy yields comparable performance to previous attempts; and adding constraints improves clustering performance further by up to 20%

    Detecting and Explaining Causes From Text For a Time Series Event

    Full text link
    Explaining underlying causes or effects about events is a challenging but valuable task. We define a novel problem of generating explanations of a time series event by (1) searching cause and effect relationships of the time series with textual data and (2) constructing a connecting chain between them to generate an explanation. To detect causal features from text, we propose a novel method based on the Granger causality of time series between features extracted from text such as N-grams, topics, sentiments, and their composition. The generation of the sequence of causal entities requires a commonsense causative knowledge base with efficient reasoning. To ensure good interpretability and appropriate lexical usage we combine symbolic and neural representations, using a neural reasoning algorithm trained on commonsense causal tuples to predict the next cause step. Our quantitative and human analysis show empirical evidence that our method successfully extracts meaningful causality relationships between time series with textual features and generates appropriate explanation between them.Comment: Accepted at EMNLP 201
    • ā€¦
    corecore