11 research outputs found

    Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow

    Get PDF
    We propose a method to classify cardiac pathology based on a novel approach to extract image derived features to characterize the shape and motion of the heart. An original semi-supervised learning procedure, which makes efficient use of a large amount of non-segmented images and a small amount of images segmented manually by experts, is developed to generate pixel-wise apparent flow between two time points of a 2D+t cine MRI image sequence. Combining the apparent flow maps and cardiac segmentation masks, we obtain a local apparent flow corresponding to the 2D motion of myocardium and ventricular cavities. This leads to the generation of time series of the radius and thickness of myocardial segments to represent cardiac motion. These time series of motion features are reliable and explainable characteristics of pathological cardiac motion. Furthermore, they are combined with shape-related features to classify cardiac pathologies. Using only nine feature values as input, we propose an explainable, simple and flexible model for pathology classification. On ACDC training set and testing set, the model achieves 95% and 94% respectively as classification accuracy. Its performance is hence comparable to that of the state-of-the-art. Comparison with various other models is performed to outline some advantages of our model

    Learning the Effect of Registration Hyperparameters with HyperMorph

    Full text link
    We introduce HyperMorph, a framework that facilitates efficient hyperparameter tuning in learning-based deformable image registration. Classical registration algorithms perform an iterative pair-wise optimization to compute a deformation field that aligns two images. Recent learning-based approaches leverage large image datasets to learn a function that rapidly estimates a deformation for a given image pair. In both strategies, the accuracy of the resulting spatial correspondences is strongly influenced by the choice of certain hyperparameter values. However, an effective hyperparameter search consumes substantial time and human effort as it often involves training multiple models for different fixed hyperparameter values and may lead to suboptimal registration. We propose an amortized hyperparameter learning strategy to alleviate this burden by learning the impact of hyperparameters on deformation fields. We design a meta network, or hypernetwork, that predicts the parameters of a registration network for input hyperparameters, thereby comprising a single model that generates the optimal deformation field corresponding to given hyperparameter values. This strategy enables fast, high-resolution hyperparameter search at test-time, reducing the inefficiency of traditional approaches while increasing flexibility. We also demonstrate additional benefits of HyperMorph, including enhanced robustness to model initialization and the ability to rapidly identify optimal hyperparameter values specific to a dataset, image contrast, task, or even anatomical region, all without the need to retrain models. We make our code publicly available at http://hypermorph.voxelmorph.net.Comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) at https://www.melba-journal.or

    CNN-based Lung CT Registration with Multiple Anatomical Constraints

    Full text link
    Deep-learning-based registration methods emerged as a fast alternative to conventional registration methods. However, these methods often still cannot achieve the same performance as conventional registration methods because they are either limited to small deformation or they fail to handle a superposition of large and small deformations without producing implausible deformation fields with foldings inside. In this paper, we identify important strategies of conventional registration methods for lung registration and successfully developed the deep-learning counterpart. We employ a Gaussian-pyramid-based multilevel framework that can solve the image registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings of the deformation field and restrict the determinant of the Jacobian to physiologically meaningful values by combining a volume change penalty with a curvature regularizer in the loss function. Keypoint correspondences are integrated to focus on the alignment of smaller structures. We perform an extensive evaluation to assess the accuracy, the robustness, the plausibility of the estimated deformation fields, and the transferability of our registration approach. We show that it achieves state-of-the-art results on the COPDGene dataset compared to conventional registration method with much shorter execution time. In our experiments on the DIRLab exhale to inhale lung registration, we demonstrate substantial improvements (TRE below 1.21.2 mm) over other deep learning methods. Our algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-based-ct-lung-registration/
    corecore