784 research outputs found

    A Novel ILP Framework for Summarizing Content with High Lexical Variety

    Full text link
    Summarizing content contributed by individuals can be challenging, because people make different lexical choices even when describing the same events. However, there remains a significant need to summarize such content. Examples include the student responses to post-class reflective questions, product reviews, and news articles published by different news agencies related to the same events. High lexical diversity of these documents hinders the system's ability to effectively identify salient content and reduce summary redundancy. In this paper, we overcome this issue by introducing an integer linear programming-based summarization framework. It incorporates a low-rank approximation to the sentence-word co-occurrence matrix to intrinsically group semantically-similar lexical items. We conduct extensive experiments on datasets of student responses, product reviews, and news documents. Our approach compares favorably to a number of extractive baselines as well as a neural abstractive summarization system. The paper finally sheds light on when and why the proposed framework is effective at summarizing content with high lexical variety.Comment: Accepted for publication in the journal of Natural Language Engineering, 201

    Scalable Teaching and Learning via Intelligent User Interfaces

    Get PDF
    The increasing demand for higher education and the educational budget cuts lead to large class sizes. Learning at scale is also the norm in Massive Open Online Courses (MOOCs). While it seems cost-effective, the massive scale of class challenges the adoption of proven pedagogical approaches and practices that work well in small classes, especially those that emphasize interactivity, active learning, and personalized learning. As a result, the standard teaching approach in today’s large classes is still lectured-based and teacher-centric, with limited active learning activities, and with relatively low teaching and learning effectiveness. This dissertation explores the usage of Intelligent User Interfaces (IUIs) to facilitate the efficient and effective adoption of the tried-and-true pedagogies at scale. The first system is MindMiner, an instructor-side data exploration and visualization system for peer review understanding. MindMiner helps instructors externalize and quantify their subjective domain knowledge, interactively make sense of student peer review data, and improve data exploration efficiency via distance metric learning. MindMiner also helps instructors generate customized feedback to students at scale. We then present BayesHeart, a probabilistic approach for implicit heart rate monitoring on smartphones. When integrated with MOOC mobile clients, BayesHeart can capture learners’ heart rates implicitly when they watch videos. Such information is the foundation of learner attention/affect modeling, which enables a ‘sensorless’ and scalable feedback channel from students to instructors. We then present CourseMIRROR, an intelligent mobile system integrated with Natural Language Processing (NLP) techniques that enables scalable reflection prompts in large classrooms. CourseMIRROR 1) automatically reminds and collects students’ in-situ written reflections after each lecture; 2) continuously monitors the quality of a student’s reflection at composition time and generates helpful feedback to scaffold reflection writing; 3) summarizes the reflections and presents the most significant ones to both instructors and students. Last, we present ToneWars, an educational game connecting Chinese as a Second Language (CSL) learners with native speakers via collaborative mobile gameplay. We present a scalable approach to enable authentic competition and skill comparison with native speakers by modeling their interaction patterns and language skills asynchronously. We also prove the effectiveness of such modeling in a longitudinal study

    PROMOTING INTERACTIVITY IN ONLINE LEARNING – TOWARDS THE ACHIEVEMENT OF HIGH-QUALITY ONLINE LEARNING OUTCOMES

    Get PDF
    Online learning is different from face-to-face contact learning. The former is technology-mediated and often accused of lacking the interaction the learners would have when learning together in contact sessions. However, the richness of online learning is flexibility, which allows learning to take place anytime from anywhere. Online learning through the utilisation of digital learning platforms may provide rich learning experiences. The Covid-19 pandemic prompted most institutions of higher learning to move to online learning due to restrictions on gathering. Some of the institutions were not prepared for this move and this resulted in challenges in implementing online learning effectively. When online learning is not implemented properly, students will be pedagogically distanced from the course instructor and the learning process. Moore’s (1989) transactional distance theory notes the importance of pedagogical distance to ensure effective distance learning. In this discussion, we unpack the transactional distance theory and suggest ways of promoting interactivity in online learning in different ways. Conclusions are drawn from the discussion and recommendations are made. Article visualizations

    Technology, Learning and Scholarship in the Early 21st Century

    Get PDF

    A Closer Look into Recent Video-based Learning Research: A Comprehensive Review of Video Characteristics, Tools, Technologies, and Learning Effectiveness

    Full text link
    People increasingly use videos on the Web as a source for learning. To support this way of learning, researchers and developers are continuously developing tools, proposing guidelines, analyzing data, and conducting experiments. However, it is still not clear what characteristics a video should have to be an effective learning medium. In this paper, we present a comprehensive review of 257 articles on video-based learning for the period from 2016 to 2021. One of the aims of the review is to identify the video characteristics that have been explored by previous work. Based on our analysis, we suggest a taxonomy which organizes the video characteristics and contextual aspects into eight categories: (1) audio features, (2) visual features, (3) textual features, (4) instructor behavior, (5) learners activities, (6) interactive features (quizzes, etc.), (7) production style, and (8) instructional design. Also, we identify four representative research directions: (1) proposals of tools to support video-based learning, (2) studies with controlled experiments, (3) data analysis studies, and (4) proposals of design guidelines for learning videos. We find that the most explored characteristics are textual features followed by visual features, learner activities, and interactive features. Text of transcripts, video frames, and images (figures and illustrations) are most frequently used by tools that support learning through videos. The learner activity is heavily explored through log files in data analysis studies, and interactive features have been frequently scrutinized in controlled experiments. We complement our review by contrasting research findings that investigate the impact of video characteristics on the learning effectiveness, report on tasks and technologies used to develop tools that support learning, and summarize trends of design guidelines to produce learning video

    2023 Projects Day Booklet

    Get PDF
    https://scholarworks.seattleu.edu/projects-day/1002/thumbnail.jp

    Automatic Summarization for Student Reflective Responses

    Get PDF
    Educational research has demonstrated that asking students to respond to reflection prompts can improve both teaching and learning. However, summarizing student responses to these prompts is an onerous task for humans and poses challenges for existing summarization methods. From the input perspective, there are three challenges. First, there is a lexical variety problem due to the fact that different students tend to use different expressions. Second, there is a length variety problem that student inputs range from single words to multiple sentences. Third, there is a redundancy issue since some content among student responses are not useful. From the output perspective, there are two additional challenges. First, the human summaries consist of a list of important phrases instead of sentences. Second, from an instructor's perspective, the number of students who have a particular problem or are interested in a particular topic is valuable. The goal of this research is to enhance student response summarization at multiple levels of granularity. At the sentence level, we propose a novel summarization algorithm by extending traditional ILP-based framework with a low-rank matrix approximation to address the challenge of lexical variety. At the phrase level, we propose a phrase summarization framework by a combination of phrase extraction, phrase clustering, and phrase ranking. Experimental results show the effectiveness on multiple student response data sets. Also at the phrase level, we propose a quantitative phrase summarization algorithm in order to estimate the number of students who semantically mention the phrases in a summary. We first introduce a new phrase-based highlighting scheme for automatic summarization. It highlights the phrases in the human summaries and also the corresponding semantically-equivalent phrases in student responses. Enabled by the highlighting scheme, we improve the previous phrase-based summarization framework by developing a supervised candidate phrase extraction, learning to estimate the phrase similarities, and experimenting with different clustering algorithms to group phrases into clusters. Experimental results show that our proposed methods not only yield better summarization performance evaluated using ROUGE, but also produce summaries that capture the pressing student needs

    Video Augmentation in Education: in-context support for learners through prerequisite graphs

    Get PDF
    The field of education is experiencing a massive digitisation process that has been ongoing for the past decade. The role played by distance learning and Video-Based Learning, which is even more reinforced by the pandemic crisis, has become an established reality. However, the typical features of video consumption, such as sequential viewing and viewing time proportional to duration, often lead to sub-optimal conditions for the use of video lessons in the process of acquisition, retrieval and consolidation of learning contents. Video augmentation can prove to be an effective support to learners, allowing a more flexible exploration of contents, a better understanding of concepts and relationships between concepts and an optimization of time required for video consumption at different stages of the learning process. This thesis focuses therefore on the study of methods for: 1) enhancing video capabilities through video augmentation features; 2) extracting concept and relationships from video materials; 3) developing intelligent user interfaces based on the knowledge extracted. The main research goal is to understand to what extent video augmentation can improve the learning experience. This research goal inspired the design of EDURELL Framework, within which two applications were developed to enable the testing of augmented methods and their provision. The novelty of this work lies in using the knowledge within the video, without exploiting external materials, to exploit its educational potential. The enhancement of the user interface takes place through various support features among which in particular a map that progressively highlights the prerequisite relationships between the concepts as they are explained, i.e., following the advancement of the video. The proposed approach has been designed following a user-centered iterative approach and the results in terms of effect and impact on video comprehension and learning experience make a contribution to the research in this field
    • …
    corecore