170 research outputs found

    Robust Recommender System: A Survey and Future Directions

    Full text link
    With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters "dirty" data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training against malicious attacks, and regularization, purification, self-supervised learning against natural noise. Additionally, we summarize evaluation metrics and common datasets used to assess robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to equip readers with a holistic understanding of robust recommender systems and spotlight pathways for future research and development

    Boosting Randomized Smoothing with Variance Reduced Classifiers

    Full text link
    Randomized Smoothing (RS) is a promising method for obtaining robustness certificates by evaluating a base model under noise. In this work, we: (i) theoretically motivate why ensembles are a particularly suitable choice as base models for RS, and (ii) empirically confirm this choice, obtaining state-of-the-art results in multiple settings. The key insight of our work is that the reduced variance of ensembles over the perturbations introduced in RS leads to significantly more consistent classifications for a given input. This, in turn, leads to substantially increased certifiable radii for samples close to the decision boundary. Additionally, we introduce key optimizations which enable an up to 55-fold decrease in sample complexity of RS, thus drastically reducing its computational overhead. Experimentally, we show that ensembles of only 3 to 10 classifiers consistently improve on their strongest constituting model with respect to their average certified radius (ACR) by 5% to 21% on both CIFAR10 and ImageNet, achieving a new state-of-the-art ACR of 0.86 and 1.11, respectively. We release all code and models required to reproduce our results upon publication

    Trust, But Verify: A Survey of Randomized Smoothing Techniques

    Full text link
    Machine learning models have demonstrated remarkable success across diverse domains but remain vulnerable to adversarial attacks. Empirical defence mechanisms often fall short, as new attacks constantly emerge, rendering existing defences obsolete. A paradigm shift from empirical defences to certification-based defences has been observed in response. Randomized smoothing has emerged as a promising technique among notable advancements. This study reviews the theoretical foundations, empirical effectiveness, and applications of randomized smoothing in verifying machine learning classifiers. We provide an in-depth exploration of the fundamental concepts underlying randomized smoothing, highlighting its theoretical guarantees in certifying robustness against adversarial perturbations. Additionally, we discuss the challenges of existing methodologies and offer insightful perspectives on potential solutions. This paper is novel in its attempt to systemise the existing knowledge in the context of randomized smoothing

    Multi-scale Diffusion Denoised Smoothing

    Full text link
    Along with recent diffusion models, randomized smoothing has become one of a few tangible approaches that offers adversarial robustness to models at scale, e.g., those of large pre-trained models. Specifically, one can perform randomized smoothing on any classifier via a simple "denoise-and-classify" pipeline, so-called denoised smoothing, given that an accurate denoiser is available - such as diffusion model. In this paper, we present scalable methods to address the current trade-off between certified robustness and accuracy in denoised smoothing. Our key idea is to "selectively" apply smoothing among multiple noise scales, coined multi-scale smoothing, which can be efficiently implemented with a single diffusion model. This approach also suggests a new objective to compare the collective robustness of multi-scale smoothed classifiers, and questions which representation of diffusion model would maximize the objective. To address this, we propose to further fine-tune diffusion model (a) to perform consistent denoising whenever the original image is recoverable, but (b) to generate rather diverse outputs otherwise. Our experiments show that the proposed multi-scale smoothing scheme combined with diffusion fine-tuning enables strong certified robustness available with high noise level while maintaining its accuracy close to non-smoothed classifiers.Comment: Published as a conference paper at NeurIPS 2023; Code is available at https://github.com/jh-jeong/smoothing-multiscal

    Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability

    Full text link
    A trustworthy reinforcement learning algorithm should be competent in solving challenging real-world problems, including {robustly} handling uncertainties, satisfying {safety} constraints to avoid catastrophic failures, and {generalizing} to unseen scenarios during deployments. This study aims to overview these main perspectives of trustworthy reinforcement learning considering its intrinsic vulnerabilities on robustness, safety, and generalizability. In particular, we give rigorous formulations, categorize corresponding methodologies, and discuss benchmarks for each perspective. Moreover, we provide an outlook section to spur promising future directions with a brief discussion on extrinsic vulnerabilities considering human feedback. We hope this survey could bring together separate threads of studies together in a unified framework and promote the trustworthiness of reinforcement learning.Comment: 36 pages, 5 figure
    corecore