3,213 research outputs found

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    Amplifier performance enhancement methods using positive feedback techniques

    Get PDF
    The dramatic growth in the hi-tech sector of consumer market has created many unprecedented challenges in the area of integrated circuits. The present and future communication and entertainment systems including high speed cable and DSL modems, broadband wired and wireless systems, and high definition visual products require very fast and high accuracy amplifiers, data converters and filters. Analog design in the new digital CMOS submicron processes is becoming an economical necessity in the industry. The task of building fast Op-Amp with very high DC-gain is already a very difficult problem, and this task has become more difficult using these new submicron digital processes, where traditional gain enhancement techniques are loosing their ability to deliver amplifiers with sufficient gain. In this work three new methods of implementing the internal positive-feedback to build very high DC-gain amplifiers with very low gain sensitivity to signal swings are presented. Amplifiers proposed in the first method have very high current-controlled gain. A DC gain larger than 100dB is possible without limiting the speed of the amplifier. Amplifiers proposed in the second method exhibit both enhanced speed, i.e., unity gain frequency, and enhanced gain. Amplifiers proposed in the third method have self-adjusting gain without extra control block. An implementation of a 3 bit multiplying DAC in a 9-bit 165MS/s pipeline ADC built in a 1.8V, 0.21mu digital CMOS process using one of the proposed amplifiers is described. Test results show high gain with very fast settling

    Design of an ECL-to-CMOS translator /

    Get PDF

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Design considerations for a monolithic, GaAs, dual-mode, QPSK/QASK, high-throughput rate transceiver

    Get PDF
    A monolithic, GaAs, dual mode, quadrature amplitude shift keying and quadrature phase shift keying transceiver with one and two billion bits per second data rate is being considered to achieve a low power, small and ultra high speed communication system for satellite as well as terrestrial purposes. Recent GaAs integrated circuit achievements are surveyed and their constituent device types are evaluated. Design considerations, on an elemental level, of the entire modem are further included for monolithic realization with practical fabrication techniques. Numerous device types, with practical monolithic compatability, are used in the design of functional blocks with sufficient performances for realization of the transceiver

    An all monolithic MOS A/D converter - Low power clocks, multiplexers, registers, and A/D converter Final report

    Get PDF
    Research and developments of monolithic, MOS, ten bit, analog to digital converte

    Boosting the voltage gain of graphene FETs through a differential amplifier scheme with positive feedback

    Full text link
    We study a possible circuit solution to overcome the problem of low voltage gain of short-channel graphene FETs. The circuit consists of a fully differential amplifier with a load made of a cross-coupled transistor pair. Starting from the device characteristics obtained from self-consistent ballistic quantum transport simulations, we explore the circuit parameter space and evaluate the amplifier performance in terms of dc voltage gain and voltage gain bandwidth. We show that the dc gain can be effectively improved by the negative differential resistance provided by the cross-coupled pair. Contact resistance is the main obstacle to achieving gain bandwidth products in the terahertz range. Limitations of the proposed amplifier are identified with its poor linearity and relatively large Miller capacitance.Comment: 19 pages, 10 figure

    Design and Analysis of a Fully-Integrated Resonant Gate Driver

    Get PDF
    Several decades ago the resonant gate driving technique was proposed. Given the recent rapid growth in GaN HEMT power device applications for high-frequency power applications, research has been conducted in the power electronics field using resonant gate driving for GaN power devices. Previous research for resonant gate drivers for GaN HEMT devices mostly focused on implementing the gate driving function itself, and mostly for normally-on HEMT devices. The normally-off (enhancement mode) GaN power device was introduced to the commercial market in 2009. A new resonate gate driver is proposed in this work to implement resonant gate driving for commercial high-speed normally-off GaN power devices. The desired resonant condition is configured by different turn-on and turn-off driving pulses with specific driving time and pulse width. Using synchronous timing control within the driver integrated circuit, the power device gate voltage is securely clamped within the expected gate voltage at switching frequencies beyond 10 MHz. In this research, a customized resonant gate driver IC was designed and developed on a commercially-available silicon CMOS process. Compared with current commercial gate driver ICs, our test results demonstrate the effectiveness, advantages and limitations of the proposed gate driver IC for the enhancement-mode GaN power device using alternative resonant gate driving techniques for the first time

    Design of an adaptive cable equalizer using 0.5 [mu]m [i.e. micrometer] CMOS process

    Get PDF
    Data transmitted over a long length of cable at high rates must be equalized in order to compensate for the loss and phase dispersion of the cable. The more the cable length, the more the loss is in it. As the data transfer rate is increasing, more bandwidth is needed and the data communication industries are demanding an equalizer system with more bandwidth. A pole-zero model for the coax cable- equalizer is developed which shows that the poles and zeros of the cable transfer function decrease linearly with the increase of the cable length. Thus an adaptive equalizer system has been designed where the length of the cable will be estimated through the peak detector circuitry and the equalizer filter will be tuned automatically according to the estimated cable length using this linearity. All the circuits of the system have been designed using AMI 0.5µm CMOS technology and simulated on Cadence\u27s Spectre tools

    Energy Harvesting for Self-Powered Wireless Sensors

    Get PDF
    A wireless sensor system is proposed for a targeted deployment in civil infrastructures (namely bridges) to help mitigate the growing problem of deterioration of civil infrastructures. The sensor motes are self-powered via a novel magnetic shape memory alloy (MSMA) energy harvesting material and a low-frequency, low-power rectifier multiplier (RM). Experimental characterizations of the MSMA device and the RM are presented. A study on practical implementation of a strain gauge sensor and its application in the proposed sensor system are undertaken and a low-power successive approximation register analog-to-digital converter (SAR ADC) is presented. The SAR ADC was fabricated and laboratory characterizations show the proposed low-voltage topology is a viable candidate for deployment in the proposed sensor system. Additionally, a wireless transmitter is proposed to transmit the SAR ADC output using on-off keying (OOK) modulation with an impulse radio ultra-wideband (IR-UWB) transmitter (TX). The RM and SAR ADC were fabricated in ON 0.5 micrometer CMOS process. An alternative transmitter architecture is also presented for use in the 3-10GHz UWB band. Unlike the IR-UWB TX described for the proposed wireless sensor system, the presented transmitter is designed to transfer large amounts of information with little concern for power consumption. This second method of data transmission divides the 3-10GHz spectrum into 528MHz sub-bands and "hops" between these sub-bands during data transmission. The data is sent over these multiple channels for short distances (?3-10m) at data rates over a few hundred million bits per second (Mbps). An UWB TX is presented for implementation in mode-I (3.1-4.6GHz) UWB which utilizes multi-band orthogonal frequency division multiplexing (MB-OFDM) to encode the information. The TX was designed and fabricated using UMC 0.13 micrometer CMOS technology. Measurement results and theoretical system level budgeting are presented for the proposed UWB TX
    corecore