4 research outputs found

    5.5 A Stacking Mixer-First Receiver Achieving >20dBm Adjacent-Channel IIP3 Consuming less than 25mW

    Get PDF
    The sub-6GHz spectrum is used by many standards including 5G New Radio. In this crowded spectrum, an RX requires good linearity and flexibility to address different bands without separate SAW filters, whilst maintaining low NF. Traditional mixer-first receivers (MF-RX) offer this flexibility while postponing voltage amplification to the end of the RX chain, benefiting linearity but leading to relatively poor NF. LNTA-based designs [1, 2] offer an alternative: initial amplification alleviates noise constraints, but the pole at the LNTA output limits the RX operating range, though efforts to reduce parasitic capacitance have been fruitful [2]. Still, linearity is impacted by this initial voltage gain, which is typically addressed by deploying an N-path notch filter in feedback around the LNTA, but its slope is generally limited to 20dB/decade, reflecting in poor adjacent channel IIP3. Although solutions to increase this slope exist, the extra circuitry increases the RF parasitics and power consumption. Also, in contrast to an MF-RX which has a low-ohmic OOB path to ground, the LNTA output stage has to fully absorb any out-of-band (00B) interferer currents.</p

    Saw-Less radio receivers in CMOS

    Get PDF
    Smartphones play an essential role in our daily life. Connected to the internet, we can easily keep in touch with family and friends, even if far away, while ever more apps serve us in numerous ways. To support all of this, higher data rates are needed for ever more wireless users, leading to a very crowded radio frequency spectrum. To achieve high spectrum efficiency while reducing unwanted interference, high-quality band-pass filters are needed. Piezo-electrical Surface Acoustic Wave (SAW) filters are conventionally used for this purpose, but such filters need a dedicated design for each new band, are relatively bulky and also costly compared to integrated circuit chips. Instead, we would like to integrate the filters as part of the entire wireless transceiver with digital smartphone hardware on CMOS chips. The research described in this thesis targets this goal. It has recently been shown that N-path filters based on passive switched-RC circuits can realize high-quality band-select filters on CMOS chips, where the center frequency of the filter is widely tunable by the switching-frequency. As CMOS downscaling following Moore’s law brings us lower clock-switching power, lower switch on-resistance and more compact metal-to-metal capacitors, N-path filters look promising. This thesis targets SAW-less wireless receiver design, exploiting N-path filters. As SAW-filters are extremely linear and selective, it is very challenging to approximate this performance with CMOS N-path filters. The research in this thesis proposes and explores several techniques for extending the linearity and enhancing the selectivity of N-path switched-RC filters and mixers, and explores their application in CMOS receiver chip designs. First the state-of-the-art in N-path filters and mixer-first receivers is reviewed. The requirements on the main receiver path are examined in case SAW-filters are removed or replaced by wideband circulators. The feasibility of a SAW-less Frequency Division Duplex (FDD) radio receiver is explored, targeting extreme linearity and compression Irequirements. A bottom-plate mixing technique with switch sharing is proposed. It improves linearity by keeping both the gate-source and gate-drain voltage swing of the MOSFET-switches rather constant, while halving the switch resistance to reduce voltage swings. A new N-path switch-RC filter stage with floating capacitors and bottom-plate mixer-switches is proposed to achieve very high linearity and a second-order voltage-domain RF-bandpass filter around the LO frequency. Extra out-of-band (OOB) rejection is implemented combined with V-I conversion and zero-IF frequency down-conversion in a second cross-coupled switch-RC N-path stage. It offers a low-ohmic high-linearity current path for out-of-band interferers. A prototype chip fabricated in a 28 nm CMOS technology achieves an in-band IIP3 of +10 dBm , IIP2 of +42 dBm, out-of-band IIP3 of +44 dBm, IIP2 of +90 dBm and blocker 1-dB gain-compression point of +13 dBm for a blocker frequency offset of 80 MHz. At this offset frequency, the measured desensitization is only 0.6 dB for a 0-dBm blocker, and 3.5 dB for a 10-dBm blocker at 0.7 GHz operating frequency (i.e. 6 and 9 dB blocker noise figure). The chip consumes 38-96 mW for operating frequencies of 0.1-2 GHz and occupies an active area of 0.49 mm2. Next, targeting to cover all frequency bands up to 6 GHz and achieving a noise figure lower than 3 dB, a mixer-first receiver with enhanced selectivity and high dynamic range is proposed. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off than the conventional up-converted real pole and reduced distortion. This thesis explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45 nm Partially Depleted Silicon on Insulator (PDSOI) technology achieves high linearity (in-band IIP3 of +3 dBm, IIP2 of +56 dBm, out-of-band IIP3 = +39 dBm, IIP2 = +88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz operating frequency. IIFinally, to demonstrate the performance of the implemented blocker-tolerant receiver chip designs, a test setup with a real mobile phone is built to verify the sensitivity of the receiver chip for different practical blocking scenarios

    Enhanced-Selectivity high-linearity low-noise mixer-first receiver with complex pole pair due to capacitive positive feedback

    Get PDF
    Abstract— A mixer-first receiver with enhanced selectivity and high dynamic range is proposed, targeting to remove SAW-filters in mobile phones and cover all frequency bands up to 6 GHz. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off and reduced distortion. This paper explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45nm Partially Depleted SOI technology achieves high out-of-band linearity (IIP3=39 dBm, IIP2=88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz

    High Speed Reconfigurable NRZ/PAM4 Transceiver Design Techniques

    Get PDF
    While the majority of wireline standards use simple binary non-return-to-zero (NRZ) signaling, four-level pulse-amplitude modulation (PAM4) standards are emerging to increase bandwidth density. This dissertation proposes efficient implementations for high speed NRZ/PAM4 transceivers. The first prototype includes a dual-mode NRZ/PAM4 serial I/O transmitter which can support both modulations with minimum power and hardware overhead. A source-series-terminated (SST) transmitter achieves 1.2Vpp output swing and employs lookup table (LUT) control of a 31-segment output digital-to-analog converter (DAC) to implement 4/2-tap feed-forward equalization (FFE) in NRZ/PAM4 modes, respectively. Transmitter power is improved with low-overhead analog impedance control in the DAC cells and a quarter-rate serializer based on a tri-state inverter-based mux with dynamic pre-driver gates. The transmitter is designed to work with a receiver that implements an NRZ/PAM4 decision feedback equalizer (DFE) that employs 1 finite impulse response (FIR) and 2 infinite impulse response (IIR) taps for first post-cursor and long-tail ISI cancellation, respectively. Fabricated in GP 65-nm CMOS, the transmitter occupies 0.060mm² area and achieves 16Gb/s NRZ and 32Gb/s PAM4 operation at 10.4 and 4.9 mW/Gb/s while operating over channels with 27.6 and 13.5dB loss at Nyquist, respectively. The second prototype presents a 56Gb/s four-level pulse amplitude modulation (PAM4) quarter-rate wireline receiver which is implemented in a 65nm CMOS process. The frontend utilize a single stage continuous time linear equalizer (CTLE) to boost the main cursor and relax the pre-cursor cancelation requirement, requiring only a 2-tap pre-cursor feed-forward equalization (FFE) on the transmitter side. A 2-tap decision feedback equalizer (DFE) with one finite impulse response (FIR) tap and one infinite impulse response (IIR) tap is employed to cancel first post-cursor and longtail inter-symbol interference (ISI). The FIR tap direct feedback is implemented inside the CML slicers to relax the critical timing of DFE and maximize the achievable data-rate. In addition to the per-slice main 3 data samplers, an error sampler is utilized for background threshold control and an edge-based sampler performs both PLL-based CDR phase detection and generates information for background DFE tap adaptation. The receiver consumes 4.63mW/Gb/s and compensates for up to 20.8dB loss when operated with a 2- tap FFE transmitter. The experimental results and comparison with state-of-the-art shows superior power efficiency of the presented prototypes for similar data-rate and channel loss. The usage of proposed design techniques are not limited to these specific prototypes and can be applied for any wireline transceiver with different modulation, data-rate and CMOS technology
    corecore