2 research outputs found

    The Upper Bounds of Cellular Vehicle-to-Vehicle Communication Latency for Platoon-based Autonomous Driving

    Get PDF
    Cellular vehicle-to-vehicle (V2V) communications can support advanced cooperative driving applications such as vehicle platooning and extended sensing. As the safety critical applications require ultra-low communication latency and deterministic service guarantee, it is vital to characterize the latency upper bound of cellular V2V communications. However, the contention-based Medium Access Control (MAC) and dynamic vehicular network topology brings many challenges to model the upper bound of cellular V2V communication latency and assess the link capability for quality of service (QoS) guarantee. In this paper, we are motivated to reduce the research gap by modelling the latency upper bound of cellular V2V with network calculus. Based on the theoretical model, the probability distribution of the delay upper bound can be obtained under the given task features and environment conditions. Moreover, we propose an intelligent scheme to reduce upper bound of end-to-end latency in vehicular platoon scenario by adaptively adjusting the V2V communication parameters. In the proposed scheme, a deep reinforcement learning model is trained and implemented to control the time slot selection probability and the number of time slots in each frame. The proposed approaches and the V2V latency upper bound are evaluated by simulation experiments. Simulation results indicate that our network calculus based analytical approach is effective in terms of the latency upper bound estimations. In addition, with fast iterative convergence, the proposed intelligent scheme can significantly reduce the latency by about 80% compared with the conventional V2V communication protocols

    Enhanced Flatbed Tow Truck Model for Stable and Safe Platooning in the Presences of Lags, Communication and Sensing Delays 

    No full text
    International audience; Many ideas have been proposed to reduce traffic congestion. Driving a platoon of vehicles with constant spacing seems to be a promising idea as it increases traffic density. But keeping constant inter-vehicle spacing requires very reliable communication. Another control policy is to drive the platoon with a time headway between vehicles. It is a robust and well known policy but large inter-vehicle distances in addition to weak stability (unity error gain) near low frequencies make it less practical. We have proposed in [1], [2] a modification of the Constant Time Headway policy (CTH). This modification largely reduces the inter-vehicle distances using only one information shared between all vehicles. In this work, we propose an additional modification of our control law. This modification makes our control law similar, in form, to the classical constant spacing policy, but it requires to share only one information between the vehicles. This modification improves the stability of the platoon and removes the weak stability of the CTH near low frequencies. We prove the robustness of the control law in the presence of actuating lags, sensing and communication delays. This proof can also be used to prove the stability of the classical constant spacing policy in the presence of all previous delays, which makes our result more general than those established in the literature. Safety is also discussed and the maximum acceptable communication delay without losing safety is determined. Simulations have been done in many critical scenarios
    corecore