3,129 research outputs found

    Improving Situational Awareness in Military Operations using Augmented Reality

    Get PDF
    During military operations, the battlefields become fractured zones where the level of confusion, noise and ambiguity impact on achieving tactical objectives. Situational Awareness (SA) becomes a challenge because the unstable perception of the situation leads to a degraded understanding that disables the soldier in projecting the proper results. To meet this challenge various military projects have focused their efforts on designing integrated digital system to support decision-making for military personnel in unknown environments. This paper presents the state of art of military systems using Augmented Reality (AR) in the battlefield.Facultad de Informátic

    The Impact of Automated Cognitive Assistants on Situational Awareness in the Brigade Combat Team

    Get PDF
    This research investigated the impact of automated cognitive assistants, specifically, the Personalized Assistant that Learns (PAL), on situational awareness, efficiency and effectiveness of decision making in the brigade combat team. PAL was recently commissioned by Defense Advanced Research Projects Agency (DARPA) to enhance decision making with the Command Post of the Future (CPOF). This is the first study to investigate PAL's effectiveness. Previous literature has indicated that automated cognitive assistants can reduce cognitive load and improve the efficiency and effectiveness of decision-making. This is consistent with constructivist theories that assume that relegating repetitive tasks to an assistant allows decision makers to focus on the most critical issues. This is particularly true in those conditions where the environment is in continuous flux and the decision makers must remain cognizant of changing situations. To investigate PAL'S influence on situational awareness, two groups of military officers comprising a convenience sample were placed into two groups representing brigade combat teams. Before tests were administered, each team was trained on the cognitive assistants and given a hands-on examination to measure competency in PAL and CPOF. All subjects participated in one trial with PAL-enhanced CPOF and one trial with CPOF alone. Self-assessments of situational awareness were administered which included sub-scales on: task management, information management, decision support, and appreciation of the environment, visualization and trust. Speed and quality of decision-making were also measured. Repeated measures analysis of variance was used to compare PAL and CPOF only on situational awareness. In the repeated measures ANOVA, the overall difference on self-report of situational awareness approachedthe .05 level with PAL (M = 1.85, SD = 0.46) and CPOF (M = 2.06, SD = 0.57; F(1,10) = 4.61, p = .057), with the lower score indicating higher approval. There was a significant difference on the decision support category of situational awareness in the second trial using both PAL and CPOF (M = 2.21, SD = 0.59; rated higher than the first trial (M = 2.53, SD = 0.49; F(1,10) = 5.06, p = .048). The following differences were not significant but the means all favored PAL over CPOF: quality of decision making products PAL (M = 2.89, SD = 0.75); CPOF (M = 2.53, SD = 0.83), speed of submission in minutes PAL (M = 9:13, SD = 3:15); CPOF (M = 10:00, SD = 5:53), and Situational Awareness quizzes PAL (M = 67.03, SD = 7.15); CPOF (M = 59.24, SD = 8.23). While comparisons of PAL and CPOF were not significant, results indicate that the PAL automated cognitive assistant has promise in improving the situational awareness and efficiency of military leaders in complex decision making. The findings demonstrate that as military officers grow more accustomed to using these analytical systems, both PAL and CPOF, they rate their support in decision making higher. This initial study of PAL was conducted with a convenience sample of 12 military officers. Further studies are warranted to investigate the benefits of automated cognitive assistant on an array of factors that influence decision-making across conditions and audiences

    Kinetic and Cyber

    Full text link
    We compare and contrast situation awareness in cyber warfare and in conventional, kinetic warfare. Situation awareness (SA) has a far longer history of study and applications in such areas as control of complex enterprises and in conventional warfare, than in cyber warfare. Far more is known about the SA in conventional military conflicts, or adversarial engagements, than in cyber ones. By exploring what is known about SA in conventional, also commonly referred to as kinetic, battles, we may gain insights and research directions relevant to cyber conflicts. We discuss the nature of SA in conventional (often called kinetic) conflict, review what is known about this kinetic SA (KSA), and then offer a comparison with what is currently understood regarding the cyber SA (CSA). We find that challenges and opportunities of KSA and CSA are similar or at least parallel in several important ways. With respect to similarities, in both kinetic and cyber worlds, SA strongly impacts the outcome of the mission. Also similarly, cognitive biases are found in both KSA and CSA. As an example of differences, KSA often relies on commonly accepted, widely used organizing representation - map of the physical terrain of the battlefield. No such common representation has emerged in CSA, yet.Comment: A version of this paper appeared as a book chapter in Cyber Defense and Situational Awareness, Springer, 2014. Prepared by US Government employees in their official duties; approved for public release, distribution unlimited. Cyber Defense and Situational Awareness. Springer International Publishing, 2014. 29-4

    Smart Simulation for Decision Support at Headquarters

    Get PDF
    While serious games are being widely adopted by NATO and partner nations, their use is currently limited to training and operations planning. In this paper, we explore new methods that use simulations for decision support during the execution of military operations. During this phase, the commander makes decisions based on knowledge of the situation and the primary objectives. We propose here to take a simulation containing smart and autonomous units, and use it to create new kinds of decision support tools capable of improving situation awareness, and consequently the quality of decisions. The breakthrough behind this initiative is the realization that we can provide HQ decision makers with access to a version of the information that smart simulated units use to make decisions. To ensure the approach was sound we first studied decision-making processes, and analyzed how situation awareness improves decision making. After analysis of the decision-making processes at various headquarters, and the types of decision criteria employed, we are able to produce innovative information, computed by the simulation, and fed by the command and control system. We then propose a prerequisite architecture, and describe the first results of our proof of concept work based on the SWORD (Simulation Wargaming for Operational Research and Doctrine) simulation. Based on the current situation (intelligence, operational state, logistics, etc.) and the current maneuver (current task), examples of what we are now capable of are as follows:  provide an immediate local force ratio map, produce a capacities map (detection, combat), compute contextual fire or logistic support time required, automatically generate lines of battle such as the Forward Line of Own Troops (FLOT), Limit Of Advance (LOA), Line of Contact (LC), Forward Edge of Battle Area (FEBA), or propose an effect based maneuver map in order to understand the current effect of the forces on the ground. We then propose a prerequisite architecture for use as a decision-support system at HQ, and describe the next smart layers that we believe should be developed for optimal results

    21st Century Simulation: Exploiting High Performance Computing and Data Analysis

    Get PDF
    This paper identifies, defines, and analyzes the limitations imposed on Modeling and Simulation by outmoded paradigms in computer utilization and data analysis. The authors then discuss two emerging capabilities to overcome these limitations: High Performance Parallel Computing and Advanced Data Analysis. First, parallel computing, in supercomputers and Linux clusters, has proven effective by providing users an advantage in computing power. This has been characterized as a ten-year lead over the use of single-processor computers. Second, advanced data analysis techniques are both necessitated and enabled by this leap in computing power. JFCOM's JESPP project is one of the few simulation initiatives to effectively embrace these concepts. The challenges facing the defense analyst today have grown to include the need to consider operations among non-combatant populations, to focus on impacts to civilian infrastructure, to differentiate combatants from non-combatants, and to understand non-linear, asymmetric warfare. These requirements stretch both current computational techniques and data analysis methodologies. In this paper, documented examples and potential solutions will be advanced. The authors discuss the paths to successful implementation based on their experience. Reviewed technologies include parallel computing, cluster computing, grid computing, data logging, OpsResearch, database advances, data mining, evolutionary computing, genetic algorithms, and Monte Carlo sensitivity analyses. The modeling and simulation community has significant potential to provide more opportunities for training and analysis. Simulations must include increasingly sophisticated environments, better emulations of foes, and more realistic civilian populations. Overcoming the implementation challenges will produce dramatically better insights, for trainees and analysts. High Performance Parallel Computing and Advanced Data Analysis promise increased understanding of future vulnerabilities to help avoid unneeded mission failures and unacceptable personnel losses. The authors set forth road maps for rapid prototyping and adoption of advanced capabilities. They discuss the beneficial impact of embracing these technologies, as well as risk mitigation required to ensure success

    Knowledge visualizations: a tool to achieve optimized operational decision making and data integration

    Get PDF
    The overabundance of data created by modern information systems (IS) has led to a breakdown in cognitive decision-making. Without authoritative source data, commanders’ decision-making processes are hindered as they attempt to paint an accurate shared operational picture (SOP). Further impeding the decision-making process is the lack of proper interface interaction to provide a visualization that aids in the extraction of the most relevant and accurate data. Utilizing the DSS to present visualizations based on OLAP cube integrated data allow decision-makers to rapidly glean information and build their situation awareness (SA). This yields a competitive advantage to the organization while in garrison or in combat. Additionally, OLAP cube data integration enables analysis to be performed on an organization’s data-flows. This analysis is used to identify the critical path of data throughout the organization. Linking a decision-maker to the authoritative data along this critical path eliminates the many decision layers in a hierarchal command structure that can introduce latency or error into the decision-making process. Furthermore, the organization has an integrated SOP from which to rapidly build SA, and make effective and efficient decisions.http://archive.org/details/knowledgevisuali1094545877Outstanding ThesisOutstanding ThesisMajor, United States Marine CorpsCaptain, United States Marine CorpsApproved for public release; distribution is unlimited

    Visualizing threat and impact assessment to improve situation awareness

    Get PDF
    Situation awareness comes from combined knowledge of the environment, friendly actions and adversaries\u27 actions. Impact assessment applies that knowledge to determine the consequences of those actions on specific missions and assets. In domains such as asymmetric warfare and cyber security, impact assessment is critical to provide timely and comprehensive situation awareness. An analyst needs to be able to quickly and accurately assess a situation, see the factors affecting important assets, and come to a conclusion on what the best course of actions are to take. Many attempts have been made to visualize a situation from observed raw data for better awareness. However none have attempted to visualize the impact and threat of observed actions on assets and missions. This thesis investigates critical visual elements that will enhance situation awareness. Our approach leverages results of threat and impact assessment of ongoing situations. These include changes in effects on assets and missions by activities, and the projection of current situations into the future. This set of information is strategically placed and displayed to facilitate analysts to perform forensic and real-time analysis. While other visualization tools have focused on achieving situational awareness through representing raw data in a meaningful way, this visualization attempts to enhance situational awareness though situational assessment

    Evaluating/Improving Representation of Intelligence Capabilities and Processes in Combat Modeling with Demonstration in COMBATXXI

    Get PDF
    NPS NRP Executive SummaryEvaluating/Improving Representation of Intelligence Capabilities and Processes in Combat Modeling with Demonstration in COMBATXXIMarine Corps Modeling & Simulation Management Office (MCMSMO)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Mixed Reality on a Virtual Globe

    Get PDF
    • …
    corecore