2,963 research outputs found

    AN ENHANCED TIBIA FRACTURE DETECTION TOOL USING IMAGE PROCESSING AND CLASSIFICATION FUSION TECHNIQUES IN X-RAY IMAGES

    Get PDF
    Automatic detection of fractures from x-ray images is considered as an important process in medical image analysis by both orthopaedic and radiologic point of view. This paper proposes a fusion-classification technique for automatic fracture detection from long bones, in particular the leg bones (Tibia bones). The proposed system has four steps, namely, preprocessing, segmentation, feature extraction and bone detect ion, which uses an amalgamation of image processing techniques for successful detection of fractures. Three classifiers, Feed Forward Back Propagation Neural Networks (BPNN), Support Vector Machine Classifiers (SVM) and NaEF;ve Bayes Classifiers (NB) are used during fusion classification. The results from various experiments prove that the proposed system is shows significant improvement in terms of detection rate and speed of classification

    Whale Optimization Algorithm with Fuzzy Wavelet Neural Network for Pneumonia Detection and Classification

    Get PDF
    Pneumonia detection and classification are a vital medical imaging task that purposes to automatically recognize and classify pneumonia-related abnormalities in chest radiographs or Chest X-Ray (CXR) imaging. Accurate and prior identification of pneumonia is important for suitable treatment and recovering patient results. The main drive is to recognize whether an X-ray image indicates the presence of pneumonia or not. A binary classification techniuqe is trained to distinguish normal and pneumonia X-rays. Deep Learning (DL) approaches are revealed major success in automating this process, assisting healthcare specialists in analyzing pneumonia more effectively. This article presents a Whale Optimization Algorithm with Fuzzy Wavelet Neural Network for Pneumonia Detection and Classification (WOAFWNN-PDC) technique on CXRs. The purpose of the WOAFWNN-PDC technique is to apply optimal DL approaches for the recognition and classification of pneumonia. In the presented WOAFWNN-PDC technique, Gaussian Filtering (GF) approach is used for the noise removal process. In addition, the MobileNetv3 model is utilized for the feature extraction method. Moreover, the FWNN technique was applied to the classification of pneumonia. Finally, the WOA can be executed for an optimum selection of the parameters related to the FWNN approach. The simulation value of the WOAFWNN-PDC algorithm was assessed on a benchmark medical database. The comparative analysis exhibits better results than the WOAFWNN-PDC technique

    Invariant Scattering Transform for Medical Imaging

    Full text link
    Over the years, the Invariant Scattering Transform (IST) technique has become popular for medical image analysis, including using wavelet transform computation using Convolutional Neural Networks (CNN) to capture patterns' scale and orientation in the input signal. IST aims to be invariant to transformations that are common in medical images, such as translation, rotation, scaling, and deformation, used to improve the performance in medical imaging applications such as segmentation, classification, and registration, which can be integrated into machine learning algorithms for disease detection, diagnosis, and treatment planning. Additionally, combining IST with deep learning approaches has the potential to leverage their strengths and enhance medical image analysis outcomes. This study provides an overview of IST in medical imaging by considering the types of IST, their application, limitations, and potential scopes for future researchers and practitioners

    Detection of Malignant Tumour in Mammography Images Using Artificial Neural Networks with Fuzzy Rules

    Get PDF
    Breast cancer is a collection of cancer cells that starts in the breast cells and it expands from tissue of breast. Now a day Mammogram is one technique to detect the breast cancer earlyusing x-ray image of breast and it is used to reduce the deaths of breast cancer. This breast cancer disease is curable if discovered starting stage. This paper studies different methods utilized for the detection of breast cancer using mammogram classification. In this paper, the feature extraction and classification of mammogram image can be done by the artificial neural networks. Different kinds of feature extraction from mammogram image to detecting the bread cancer contains shape, position and surface features etc., this image feature extraction is significant in classification of image. By utilizing the image processing these image features are extracted. Image segmentation is performed for feature extraction of mammogram image, in this process image is partitioned into multiple segments, therefore when change the image representation into something that is more significant and simple to examine. Here the fuzzy rules are introduced to process the related data from cases of breast cancer in mammogram image in order to give the risk diagnosis of breast cancer. The preprocessing method is used to sustain an effectiveness of image by correct and adjusting the mammogram image and also it is used to improve the image quality and create it ready for additional working by reducing the unrelated noise to provide new brightness value in output image it is called as filtration and unwanted parts of background of mammogram image is eliminated. Some techniques are discussed for mammogram image classification to earlier detection of breast cancer

    Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images

    Get PDF
    Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several wavelets families (so called kernels) are able to generate different multi-resolution representations of the original image, and which of them produces more salient images is not yet clear. In this study, an in-depth analysis is performed by comparing different wavelet kernels and by evaluating their impact on predictive capabilities of radiomic models. A dataset composed of 1589 chest X-ray images was used for COVID-19 prognosis prediction as a case study. Random forest, support vector machine, and XGBoost were trained (on a subset of 1103 images) after a rigorous feature selection strategy to build-up the predictive models. Next, to evaluate the models generalization capability on unseen data, a test phase was performed (on a subset of 486 images). The experimental findings showed that Bior1.5, Coif1, Haar, and Sym2 kernels guarantee better and similar performance for all three machine learning models considered. Support vector machine and random forest showed comparable performance, and they were better than XGBoost. Additionally, random forest proved to be the most stable model, ensuring an appropriate balance between sensitivity and specificity

    DFDL: Discriminative Feature-oriented Dictionary Learning for Histopathological Image Classification

    Full text link
    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structure. In this paper, we propose an automatic feature discovery framework for extracting discriminative class-specific features and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific features which are suitable for representing samples from the same class while are poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian lung images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, show the significance of DFDL model in a variety problems over state-of-the-art methodsComment: Accepted to IEEE International Symposium on Biomedical Imaging (ISBI), 201

    Computer Aided Diagnosis - Medical Image Analysis Techniques

    Get PDF
    Breast cancer is the second leading cause of death among women worldwide. Mammography is the basic tool available for screening to find the abnormality at the earliest. It is shown to be effective in reducing mortality rates caused by breast cancer. Mammograms produced by low radiation X-ray are difficult to interpret, especially in screening context. The sensitivity of screening depends on image quality and unclear evidence available in the image. The radiologists find it difficult to interpret the digital mammography; hence, computer-aided diagnosis (CAD) technology helps to improve the performance of radiologists by increasing sensitivity rate in a cost-effective way. Current research is focused toward the designing and development of medical imaging and analysis system by using digital image processing tools and the techniques of artificial intelligence, which can detect the abnormality features, classify them, and provide visual proofs to the radiologists. The computer-based techniques are more suitable for detection of mass in mammography, feature extraction, and classification. The proposed CAD system addresses the several steps such as preprocessing, segmentation, feature extraction, and classification. Though commercial CAD systems are available, identification of subtle signs for breast cancer detection and classification remains difficult. The proposed system presents some advanced techniques in medical imaging to overcome these difficulties

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy
    corecore