5 research outputs found

    Enhanced Machine Learning Techniques for Early HARQ Feedback Prediction in 5G

    Full text link
    We investigate Early Hybrid Automatic Repeat reQuest (E-HARQ) feedback schemes enhanced by machine learning techniques as a path towards ultra-reliable and low-latency communication (URLLC). To this end, we propose machine learning methods to predict the outcome of the decoding process ahead of the end of the transmission. We discuss different input features and classification algorithms ranging from traditional methods to newly developed supervised autoencoders. These methods are evaluated based on their prospects of complying with the URLLC requirements of effective block error rates below 10−510^{-5} at small latency overheads. We provide realistic performance estimates in a system model incorporating scheduling effects to demonstrate the feasibility of E-HARQ across different signal-to-noise ratios, subcode lengths, channel conditions and system loads, and show the benefit over regular HARQ and existing E-HARQ schemes without machine learning.Comment: 14 pages, 15 figures; accepted versio

    A Very Brief Introduction to Machine Learning With Applications to Communication Systems

    Get PDF
    Given the unprecedented availability of data and computing resources, there is widespread renewed interest in applying data-driven machine learning methods to problems for which the development of conventional engineering solutions is challenged by modelling or algorithmic deficiencies. This tutorial-style paper starts by addressing the questions of why and when such techniques can be useful. It then provides a high-level introduction to the basics of supervised and unsupervised learning. For both supervised and unsupervised learning, exemplifying applications to communication networks are discussed by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack

    Wireless Resource Management in Industrial Internet of Things

    Get PDF
    Wireless communications are highly demanded in Industrial Internet of Things (IIoT) to realize the vision of future flexible, scalable and customized manufacturing. Despite the academia research and on-going standardization efforts, there are still many challenges for IIoT, including the ultra-high reliability and low latency requirements, spectral shortage, and limited energy supply. To tackle the above challenges, we will focus on wireless resource management in IIoT in this thesis by designing novel framework, analyzing performance and optimizing wireless resources. We first propose a bandwidth reservation scheme for Tactile Internet in the local area network of IIoT. Specifically, we minimize the reserved bandwidth taking into account the classification errors while ensuring the latency and reliability requirements. We then extend to the more challenging long distance communications for IIoT, which can support the global skill-set delivery network. We propose to predict the future system state and send to the receiver in advance, and thus the delay experienced by the user is reduced. The bandwidth usage is analysed and minimized to ensure delay and reliability requirements. Finally, we address the issue of energy supply in IIoT, where Radio frequency energy harvesting (RFEH) is used to charge unattended IIoT low-power devices remotely and continuously. To motivate the third-party chargers, a contract theory-based framework is proposed, where the optimal contract is derived to maximize the social welfare
    corecore