12,579 research outputs found

    Enhanced Input Modeling for Construction Simulation using Bayesian Deep Neural Networks

    Full text link
    This paper aims to propose a novel deep learning-integrated framework for deriving reliable simulation input models through incorporating multi-source information. The framework sources and extracts multisource data generated from construction operations, which provides rich information for input modeling. The framework implements Bayesian deep neural networks to facilitate the purpose of incorporating richer information in input modeling. A case study on road paving operation is performed to test the feasibility and applicability of the proposed framework. Overall, this research enhances input modeling by deriving detailed input models, thereby, augmenting the decision-making processes in construction operations. This research also sheds lights on prompting data-driven simulation through incorporating machine learning techniques

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore