2 research outputs found

    A Gender Recognition System Using Facial Images with High Dimensional Data

    Get PDF
    Gender recognition has been seen as an interesting research area that plays important roles in many fields of study. Studies from MIT and Microsoft clearly showed that the female gender was poorly recognized especially among dark-skinned nationals. The focus of this paper is to present a technique that categorise gender among dark-skinned people. The classification was done using SVM on sets of images gathered locally and publicly. Analysis includes; face detection using Viola-Jones algorithm, extraction of Histogram of Oriented Gradient and Rotation Invariant LBP (RILBP) features and trained with SVM classifier. PCA was performed on both the HOG and RILBP descriptors to extract high dimensional features. Various success rates were recorded, however, PCA on RILBP performed best with an accuracy of 99.6% and 99.8% respectively on the public and local datasets. This system will be of immense benefit in application areas like social interaction and targeted advertisement

    Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    No full text
    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images
    corecore