4 research outputs found

    AN ADAPTIVE CHANNEL HOPPING ALGORITHM FOR WIRELESS SENSOR NETWORK WITH MESH STRUCTURE

    Full text link

    A Dynamic Interference-Avoidance Algorithm for Frequency Hopping Systems

    Get PDF
    In this paper we investigate an algorithm for the Adaptive Frequency Hopping mechanism that is used by frequency dynamic systems to mitigate interference from othersystems. With this algorithm we introduce several improvements in relation to the existing algorithms that are based on the approach of using Packet Error Rate as the means for channel classification. One is the use of a single criterion for channel classification regardless of the dynamics of interfering systems, which adds more flexibility and reduces the risk of erroneous channel classification. The second is the introduction of the concept of channel probing which ensures that channels that areexcluded from the hopset are not used until they are clear from interference. The third improvement is the parameterization of the algorithm, which enables the control of the trade off between the main achievements of the algorithm: throughput and quickness of adaptation to changing interference. We show these achievements of the proposed algorithm through simulation

    Enhanced Adaptive Frequency Hopping for Wireless Personal Area Networks in a Coexistence Environment

    No full text
    Abstract — In this paper, we present an enhanced adaptive frequency hopping (EAFH) mechanism for improving the performance of frequency hopping-based wireless personal area networks (WPANs) under frequency-static and frequency-dynamic interference. The proposed mechanism monitors the overall packet error rate (PER) of the system to determine the right number of channels to be excluded from the hopset. Then based on the PER of individual channel, it decides whether to exclude a certain channel or not. Finally, proper packet length is associated with those channels remaining in the hopset. These decisions, which pertain to hopset size and packet length, are made so as to optimize the performance of the hopping system in a coexistence environment. We developed an analytical model to justify the behavior and performance of the proposed mechanism. Simulations are conducted under an environment of some collocated Bluetooth (BT) piconets and a Wi-Fi network to validate the developed model and show the superiority of EAFH. Simulation results show that, compared with those existing mechanisms including orthogonal hopset-based mechanisms, EAFH could provide much higher throughput while still maintaining reasonably good channel occupancy. I
    corecore