14 research outputs found

    Enhance Visual Recognition under Adverse Conditions via Deep Networks

    Full text link
    Visual recognition under adverse conditions is a very important and challenging problem of high practical value, due to the ubiquitous existence of quality distortions during image acquisition, transmission, or storage. While deep neural networks have been extensively exploited in the techniques of low-quality image restoration and high-quality image recognition tasks respectively, few studies have been done on the important problem of recognition from very low-quality images. This paper proposes a deep learning based framework for improving the performance of image and video recognition models under adverse conditions, using robust adverse pre-training or its aggressive variant. The robust adverse pre-training algorithms leverage the power of pre-training and generalizes conventional unsupervised pre-training and data augmentation methods. We further develop a transfer learning approach to cope with real-world datasets of unknown adverse conditions. The proposed framework is comprehensively evaluated on a number of image and video recognition benchmarks, and obtains significant performance improvements under various single or mixed adverse conditions. Our visualization and analysis further add to the explainability of results

    U-Finger: Multi-Scale Dilated Convolutional Network for Fingerprint Image Denoising and Inpainting

    Full text link
    This paper studies the challenging problem of fingerprint image denoising and inpainting. To tackle the challenge of suppressing complicated artifacts (blur, brightness, contrast, elastic transformation, occlusion, scratch, resolution, rotation, and so on) while preserving fine textures, we develop a multi-scale convolutional network, termed U- Finger. Based on the domain expertise, we show that the usage of dilated convolutions as well as the removal of padding have important positive impacts on the final restoration performance, in addition to multi-scale cascaded feature modules. Our model achieves the overall ranking of No.2 in the ECCV 2018 Chalearn LAP Inpainting Competition Track 3 (Fingerprint Denoising and Inpainting). Among all participating teams, we obtain the MSE of 0.0231 (rank 2), PSNR 16.9688 dB (rank 2), and SSIM 0.8093 (rank 3) on the hold-out testing set.Comment: ECCV 2018 Track-3 Challenge Inpainting to denoise fingerprin

    High Frequency Residual Learning for Multi-Scale Image Classification

    Full text link
    We present a novel high frequency residual learning framework, which leads to a highly efficient multi-scale network (MSNet) architecture for mobile and embedded vision problems. The architecture utilizes two networks: a low resolution network to efficiently approximate low frequency components and a high resolution network to learn high frequency residuals by reusing the upsampled low resolution features. With a classifier calibration module, MSNet can dynamically allocate computation resources during inference to achieve a better speed and accuracy trade-off. We evaluate our methods on the challenging ImageNet-1k dataset and observe consistent improvements over different base networks. On ResNet-18 and MobileNet with alpha=1.0, MSNet gains 1.5% accuracy over both architectures without increasing computations. On the more efficient MobileNet with alpha=0.25, our method gains 3.8% accuracy with the same amount of computations

    Connecting Image Denoising and High-Level Vision Tasks via Deep Learning

    Full text link
    Image denoising and high-level vision tasks are usually handled independently in the conventional practice of computer vision, and their connection is fragile. In this paper, we cope with the two jointly and explore the mutual influence between them with the focus on two questions, namely (1) how image denoising can help improving high-level vision tasks, and (2) how the semantic information from high-level vision tasks can be used to guide image denoising. First for image denoising we propose a convolutional neural network in which convolutions are conducted in various spatial resolutions via downsampling and upsampling operations in order to fuse and exploit contextual information on different scales. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We experimentally show that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network produces more visually appealing results. Extensive experiments demonstrate the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning. The code is available online: https://github.com/Ding-Liu/DeepDenoisingComment: arXiv admin note: text overlap with arXiv:1706.0428

    Segmentation-Aware Image Denoising without Knowing True Segmentation

    Full text link
    Several recent works discussed application-driven image restoration neural networks, which are capable of not only removing noise in images but also preserving their semantic-aware details, making them suitable for various high-level computer vision tasks as the pre-processing step. However, such approaches require extra annotations for their high-level vision tasks, in order to train the joint pipeline using hybrid losses. The availability of those annotations is yet often limited to a few image sets, potentially restricting the general applicability of these methods to denoising more unseen and unannotated images. Motivated by that, we propose a segmentation-aware image denoising model dubbed U-SAID, based on a novel unsupervised approach with a pixel-wise uncertainty loss. U-SAID does not need any ground-truth segmentation map, and thus can be applied to any image dataset. It generates denoised images with comparable or even better quality, and the denoised results show stronger robustness for subsequent semantic segmentation tasks, when compared to either its supervised counterpart or classical "application-agnostic" denoisers. Moreover, we demonstrate the superior generalizability of U-SAID in three-folds, by plugging its "universal" denoiser without fine-tuning: (1) denoising unseen types of images; (2) denoising as pre-processing for segmenting unseen noisy images; and (3) denoising for unseen high-level tasks. Extensive experiments demonstrate the effectiveness, robustness and generalizability of the proposed U-SAID over various popular image sets

    Effects of Image Degradations to CNN-based Image Classification

    Full text link
    Just like many other topics in computer vision, image classification has achieved significant progress recently by using deep-learning neural networks, especially the Convolutional Neural Networks (CNN). Most of the existing works are focused on classifying very clear natural images, evidenced by the widely used image databases such as Caltech-256, PASCAL VOCs and ImageNet. However, in many real applications, the acquired images may contain certain degradations that lead to various kinds of blurring, noise, and distortions. One important and interesting problem is the effect of such degradations to the performance of CNN-based image classification. More specifically, we wonder whether image-classification performance drops with each kind of degradation, whether this drop can be avoided by including degraded images into training, and whether existing computer vision algorithms that attempt to remove such degradations can help improve the image-classification performance. In this paper, we empirically study this problem for four kinds of degraded images -- hazy images, underwater images, motion-blurred images and fish-eye images. For this study, we synthesize a large number of such degraded images by applying respective physical models to the clear natural images and collect a new hazy image dataset from the Internet. We expect this work can draw more interests from the community to study the classification of degraded images

    Survey of Face Detection on Low-quality Images

    Full text link
    Face detection is a well-explored problem. Many challenges on face detectors like extreme pose, illumination, low resolution and small scales are studied in the previous work. However, previous proposed models are mostly trained and tested on good-quality images which are not always the case for practical applications like surveillance systems. In this paper, we first review the current state-of-the-art face detectors and their performance on benchmark dataset FDDB, and compare the design protocols of the algorithms. Secondly, we investigate their performance degradation while testing on low-quality images with different levels of blur, noise, and contrast. Our results demonstrate that both hand-crafted and deep-learning based face detectors are not robust enough for low-quality images. It inspires researchers to produce more robust design for face detection in the wild

    Learning Model-Blind Temporal Denoisers without Ground Truths

    Full text link
    Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises, giving way to methods that can adapt to existing noise without knowing its ground truth. Previous image-based method leads to noise overfitting if directly applied to video denoisers, and has inadequate temporal information management especially in terms of occlusion and lighting variation, which considerably hinders its denoising performance. In this paper, we propose a general framework for video denoising networks that successfully addresses these challenges. A novel twin sampler assembles training data by decoupling inputs from targets without altering semantics, which not only effectively solves the noise overfitting problem, but also generates better occlusion masks efficiently by checking optical flow consistency. An online denoising scheme and a warping loss regularizer are employed for better temporal alignment. Lighting variation is quantified based on the local similarity of aligned frames. Our method consistently outperforms the prior art by 0.6-3.2dB PSNR on multiple noises, datasets and network architectures. State-of-the-art results on reducing model-blind video noises are achieved. Extensive ablation studies are conducted to demonstrate the significance of each technical components.Comment: 17 pages, 6 figure

    Low-resolution Face Recognition in the Wild via Selective Knowledge Distillation

    Full text link
    Typically, the deployment of face recognition models in the wild needs to identify low-resolution faces with extremely low computational cost. To address this problem, a feasible solution is compressing a complex face model to achieve higher speed and lower memory at the cost of minimal performance drop. Inspired by that, this paper proposes a learning approach to recognize low-resolution faces via selective knowledge distillation. In this approach, a two-stream convolutional neural network (CNN) is first initialized to recognize high-resolution faces and resolution-degraded faces with a teacher stream and a student stream, respectively. The teacher stream is represented by a complex CNN for high-accuracy recognition, and the student stream is represented by a much simpler CNN for low-complexity recognition. To avoid significant performance drop at the student stream, we then selectively distil the most informative facial features from the teacher stream by solving a sparse graph optimization problem, which are then used to regularize the fine-tuning process of the student stream. In this way, the student stream is actually trained by simultaneously handling two tasks with limited computational resources: approximating the most informative facial cues via feature regression, and recovering the missing facial cues via low-resolution face classification. Experimental results show that the student stream performs impressively in recognizing low-resolution faces and costs only 0.15MB memory and runs at 418 faces per second on CPU and 9,433 faces per second on GPU

    Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study

    Full text link
    This paper aims to improve privacy-preserving visual recognition, an increasingly demanded feature in smart camera applications, by formulating a unique adversarial training framework. The proposed framework explicitly learns a degradation transform for the original video inputs, in order to optimize the trade-off between target task performance and the associated privacy budgets on the degraded video. A notable challenge is that the privacy budget, often defined and measured in task-driven contexts, cannot be reliably indicated using any single model performance, because a strong protection of privacy has to sustain against any possible model that tries to hack privacy information. Such an uncommon situation has motivated us to propose two strategies, i.e., budget model restarting and ensemble, to enhance the generalization of the learned degradation on protecting privacy against unseen hacker models. Novel training strategies, evaluation protocols, and result visualization methods have been designed accordingly. Two experiments on privacy-preserving action recognition, with privacy budgets defined in various ways, manifest the compelling effectiveness of the proposed framework in simultaneously maintaining high target task (action recognition) performance while suppressing the privacy breach risk.Comment: A conference version of this paper is accepted by ECCV'18. A shorter version of this paper is accepted by ICML'18 PiMLAI worksho
    corecore