26,041 research outputs found

    Industry-driven innovative system development for the construction industry: The DIVERCITY project

    Get PDF
    Collaborative working has become possible using the innovative integrated systems in construction as many activities are performed globally with stakeholders situated in various locations. The Integrated VR based information systems can bind the fragmentation and provide communication and collaboration between the distributed stakeholders n various locations. The development of these technologies is vital for the uptake of these systems by the construction industry. This paper starts by emphasising the importance of construction IT research and reviews some future research directions in this area. In particular, the paper explores how virtual prototyping can improve the productivity and effectiveness of construction projects, and presents DIVERCITY, which is th as a case study of the research in virtual prototyping. Besides, the paper explores the requirements engineering of the DIVERCITY project. DIVERCITY has large and evolving requirements, which considered the perspectives of multiple stakeholders, such as clients, architects and contractors. However, practitioners are often unsure of the detail of how virtual environments would support the construction process, and how to overcome some barriers to the introduction of new technologies. This complicates the requirements engineering process

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with

    A Product Oriented Modelling Concept: Holons for systems synchronisation and interoperability

    Get PDF
    Nowadays, enterprises are confronted to growing needs for traceability, product genealogy and product life cycle management. To meet those needs, the enterprise and applications in the enterprise environment have to manage flows of information that relate to flows of material and that are managed in shop floor level. Nevertheless, throughout product lifecycle coordination needs to be established between reality in the physical world (physical view) and the virtual world handled by manufacturing information systems (informational view). This paper presents the "Holon" modelling concept as a means for the synchronisation of both physical view and informational views. Afterwards, we show how the concept of holon can play a major role in ensuring interoperability in the enterprise context

    Iterative criteria-based approach to engineering the requirements of software development methodologies

    Get PDF
    Software engineering endeavours are typically based on and governed by the requirements of the target software; requirements identification is therefore an integral part of software development methodologies. Similarly, engineering a software development methodology (SDM) involves the identification of the requirements of the target methodology. Methodology engineering approaches pay special attention to this issue; however, they make little use of existing methodologies as sources of insight into methodology requirements. The authors propose an iterative method for eliciting and specifying the requirements of a SDM using existing methodologies as supplementary resources. The method is performed as the analysis phase of a methodology engineering process aimed at the ultimate design and implementation of a target methodology. An initial set of requirements is first identified through analysing the characteristics of the development situation at hand and/or via delineating the general features desirable in the target methodology. These initial requirements are used as evaluation criteria; refined through iterative application to a select set of relevant methodologies. The finalised criteria highlight the qualities that the target methodology is expected to possess, and are therefore used as a basis for de. ning the final set of requirements. In an example, the authors demonstrate how the proposed elicitation process can be used for identifying the requirements of a general object-oriented SDM. Owing to its basis in knowledge gained from existing methodologies and practices, the proposed method can help methodology engineers produce a set of requirements that is not only more complete in span, but also more concrete and rigorous

    Comparative Study on Agile software development methodologies

    Get PDF
    Today-s business environment is very much dynamic, and organisations are constantly changing their software requirements to adjust with new environment. They also demand for fast delivery of software products as well as for accepting changing requirements. In this aspect, traditional plan-driven developments fail to meet up these requirements. Though traditional software development methodologies, such as life cycle-based structured and object oriented approaches, continue to dominate the systems development few decades and much research has done in traditional methodologies, Agile software development brings its own set of novel challenges that must be addressed to satisfy the customer through early and continuous delivery of the valuable software. It is a set of software development methods based on iterative and incremental development process, where requirements and development evolve through collaboration between self-organizing, cross-functional teams that allows rapid delivery of high quality software to meet customer needs and also accommodate changes in the requirements. In this paper, we significantly identify and describe the major factors, that Agile development approach improves software development process to meet the rapid changing business environments. We also provide a brief comparison of agile development methodologies with traditional systems development methodologies, and discuss current state of adopting agile methodologies. We speculate that from the need to satisfy the customer through early and continuous delivery of the valuable software, Agile software development is emerged as an alternative to traditional plan-based software development methods. The purpose of this paper, is to provide an in-depth understanding, the major benefits of agile development approach to software development industry, as well as provide a comparison study report of ASDM over TSDM.Comment: 25 pages, 25 images, 86 references used, with authors biographie

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Evaluating Enterprize Delivery Using the TYPUS Metrics and the KILT Mode

    Get PDF
    The goal of this work is the technical, ecological, environmental and social examination of the life-cycle (LC) of any product (consumable, service, production) using the TYPUS metrics and the KILT model. The life-cycle starts when the idea of a product is born and lasts until complete dismissal through design, implementation and operation, etc. In the first phases requirements’ specification, analysis, several design steps (global plan, detailed design, assembly design, etc.) are followed by part manufacturing, assembly, testing, diagnostics and operation, advertisement, service, maintenance, etc. Then finally disassembly and dismissal are coming, but dismissal can be substituted by re-cycling (e.g. melting the metals) or re-use (used parts applications). Qualitative and quantitative evaluations of enterprise results are supported by the new models and metrics
    corecore