3 research outputs found

    Enforcing strong stability of explicit Runge--Kutta methods with superviscosity

    Full text link
    A time discretization method is called strongly stable, if the norm of its numerical solution is nonincreasing. It is known that, even for linear semi-negative problems, many explicit Runge--Kutta (RK) methods fail to preserve this property. In this paper, we enforce strong stability by modifying the method with superviscosity, which is a numerical technique commonly used in spectral methods. We propose two approaches, the modified method and the filtering method for stabilization. The modified method is achieved by modifying the semi-negative operator with a high order superviscosity term; the filtering method is to post-process the solution by solving a diffusive or dispersive problem with small superviscosity. For linear problems, most explicit RK methods can be stabilized with either approach without accuracy degeneration. Furthermore, we prove a sharp bound (up to an equal sign) on diffusive superviscosity for ensuring strong stability. The bound we derived for general dispersive-diffusive superviscosity is also verified to be sharp numerically. For nonlinear problems, a filtering method is investigated for stabilization. Numerical examples with linear non-normal ordinary differential equation systems and for discontinuous Galerkin approximation of conservation laws are performed to validate our analysis and to test the performance.Comment: 40 page

    Error analysis of Runge--Kutta discontinuous Galerkin methods for linear time-dependent partial differential equations

    Full text link
    In this paper, we present error estimates of fully discrete Runge--Kutta discontinuous Galerkin (DG) schemes for linear time-dependent partial differential equations. The analysis applies to explicit Runge--Kutta time discretizations of any order. For spatial discretization, a general discrete operator is considered, which covers various DG methods, such as the upwind-biased DG method, the central DG method, the local DG method and the ultra-weak DG method. We obtain error estimates for stable and consistent fully discrete schemes, if the solution is sufficiently smooth and a spatial operator with certain properties exists. Applications to schemes for hyperbolic conservation laws, the heat equation, the dispersive equation and the wave equation are discussed. In particular, we provide an alternative proof of optimal error estimates of local DG methods for equations with high order derivatives in one dimension, which does not rely on energy inequalities of auxiliary unknowns

    On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: Energy conservation and multi-symplecticity

    Full text link
    In this paper, we present and study discontinuous Galerkin (DG) methods for one-dimensional multi-symplectic Hamiltonian partial differential equations. We particularly focus on semi-discrete schemes with spatial discretization only, and show that the proposed DG methods can simultaneously preserve the multi-symplectic structure and energy conservation with a general class of numerical fluxes, which includes the well-known central and alternating fluxes. Applications to the wave equation, the Benjamin-Bona-Mahony equation, the Camassa-Holm equation, the Korteweg-de Vries equation and the nonlinear Schr\"odinger equation are discussed. Some numerical results are provided to demonstrate the accuracy and long time behavior of the proposed methods. Numerically, we observe that certain choices of numerical fluxes in the discussed class may help achieve better accuracy compared with the commonly used ones including the central fluxes.Comment: 34 page
    corecore