3 research outputs found

    Wireless Powered Communications: Performance Analysis and Optimization

    Full text link
    This paper investigates the average throughput of a wireless powered communications system, where an energy constrained source, powered by a dedicated power beacon (PB), communicates with a destination. It is assumed that the PB is capable of performing channel estimation, digital beamforming, and spectrum sensing as a communication device. Considering a time splitting approach, the source first harvests energy from the PB equipped with multiple antennas, and then transmits information to the destination. Assuming Nakagami-m fading channels, analytical expressions for the average throughput are derived for two different transmission modes, namely, delay tolerant and delay intolerant. In addition, closed-form solutions for the optimal time split, which maximize the average throughput are obtained in some special cases, i.e., high transmit power regime and large number of antennas. Finally, the impact of co-channel interference is studied. Numerical and simulation results have shown that increasing the number of transmit antennas at the PB is an effective tool to improve the average throughput and the interference can be potentially exploited to enhance the average throughput, since it can be utilized as an extra source of energy. Also, the impact of fading severity level of the energy transfer link on the average throughput is not significant, especially if the number of PB antennas is large. Finally, it is observed that the source position has a great impact on the average throughput.Comment: accepted to appear in IEEE Transactions on Communication

    Energy-Efficient Resource Allocation for Wireless Powered Communication Networks

    Full text link
    This paper considers a wireless powered communication network (WPCN), where multiple users harvest energy from a dedicated power station and then communicate with an information receiving station. Our goal is to investigate the maximum achievable energy efficiency (EE) of the network via joint time allocation and power control while taking into account the initial battery energy of each user. We first study the EE maximization problem in the WPCN without any system throughput requirement. We show that the EE maximization problem for the WPCN can be cast into EE maximization problems for two simplified networks via exploiting its special structure. For each problem, we derive the optimal solution and provide the corresponding physical interpretation, despite the non-convexity of the problems. Subsequently, we study the EE maximization problem under a minimum system throughput constraint. Exploiting fractional programming theory, we transform the resulting non-convex problem into a standard convex optimization problem. This allows us to characterize the optimal solution structure of joint time allocation and power control and to derive an efficient iterative algorithm for obtaining the optimal solution. Simulation results verify our theoretical findings and demonstrate the effectiveness of the proposed joint time and power optimization.Comment: Transactions on Wireless Communication

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial
    corecore