1 research outputs found

    Algorithms for Energy Efficiency in Wireless Sensor Networks

    Get PDF
    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential) forwarding nodes. By actively selecting a forwarder among all nodes that received a packet successfully, retransmissions can often be avoided. In the majority of cases, multi-link forwarding is thus more efficient and able to save energy. In the last part of this thesis, we present a topology and energy control algorithm (TECA) to turn off the nodes' radio transceivers completely in order to avoid idle listening. By means of TECA, a connected backbone of active nodes is established, while all other nodes may sleep and save energy by turning off their radios. All algorithms presented in this thesis have been fully analyzed, simulated, and implemented on the ESB platform. They are suitable for several applications scenarios and can easily be adapted even to other wireless sensor platforms
    corecore