2,357 research outputs found

    Energy-Efficient Resource Allocation in Multiuser OFDM Systems with Wireless Information and Power Transfer

    Full text link
    In this paper, we study the resource allocation algorithm design for multiuser orthogonal frequency division multiplexing (OFDM) downlink systems with simultaneous wireless information and power transfer. The algorithm design is formulated as a non-convex optimization problem for maximizing the energy efficiency of data transmission (bit/Joule delivered to the users). In particular, the problem formulation takes into account the minimum required system data rate, heterogeneous minimum required power transfers to the users, and the circuit power consumption. Subsequently, by exploiting the method of time-sharing and the properties of nonlinear fractional programming, the considered non-convex optimization problem is solved using an efficient iterative resource allocation algorithm. For each iteration, the optimal power allocation and user selection solution are derived based on Lagrange dual decomposition. Simulation results illustrate that the proposed iterative resource allocation algorithm achieves the maximum energy efficiency of the system and reveal how energy efficiency, system capacity, and wireless power transfer benefit from the presence of multiple users in the system.Comment: 6 pages. The paper has been accepted for publication at the IEEE Wireless Communications and Networking Conference (WCNC) 2013, Shanghai, China, Apr. 201

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter

    Control and data channel resource allocation in OFDMA heterogeneous networks

    Get PDF
    This paper investigates the downlink resource allocation problem in Orthogonal Frequency Division Multiple Access (OFDMA) Heterogeneous Networks (HetNets) consisting of macro cells and small cells sharing the same frequency band. Dense deployment of small cells overlaid by a macro layer is considered to be one of the most promising solutions for providing hotspot coverage in future 5G networks. The focus is to devise an optimised policy for small cells’ access to the shared spectrum, in terms of their transmissions, in order to keep small cell served users sum data rate at high levels while ensuring that certain level of quality of service (QoS) for the macro cell users in the vicinity of small cells is provided. Both data and control channel constraints are considered, to ensure that not only the macro cell users’ data rate demands are met, but also a certain level of Bit Error Rate (BER) is ensured for the control channel information. Control channel reliability is especially important as it holds key information to successfully decode the data channel. The problem is addressed by our proposed linear binary integer programming heuristic algorithm which maximises the small cells utility while ensuring the macro users imposed constraints. To further reduce the computational complexity, we propose a progressive interference aware low complexity heuristic solution. Discussion is also presented for the implementation possibility of our proposed algorithms in a practical network. The performance of both the proposed algorithms is compared with the conventional Reuse-1 scheme under different fading conditions and small cell loads. Results show a negligible drop in small cell performance for our proposed schemes, as a trade-off for ensuring all macro users data rate demands, while Reuse-1 scheme can even lead up to 40 % outage when control region of the small cells in heavily loaded
    • …
    corecore