1 research outputs found

    Energy-Consistent Haptic Rendering of Contact Forces

    Get PDF
    Abstract-Enhancing the realism of the perceived contact force is a primary challenge in haptic rendering of virtual walls (VWs) and objects (VOs). For VOs, this goal directly translates into accurate rendering of not only stiffness, but also mass. The most challenging situation arises when the stiffness of the object is large, its mass is small, and sampling is slow. To address this challenge, a framework entitled highfidelity haptic rendering (HFCR) has been developed. The HFCR framework is composed of the following three main strategies: an energy-consistent rendering of the contact force, smooth transition between contact modes, and remaining leak dissipation. The essence of all these strategies is to make the energy of the VO emulate its continuous-time counterpart. This is achieved through physically meaningful modifications in the constitutive relations to suppress artificial energy leaks. This paper reports simulation and experiments involving the onedimensional canonical model of a VO to illustrate the HFCR framework and compare it to the existing methods. Results demonstrate the promising stability and force rendering fidelity of this framework
    corecore