3 research outputs found

    Virtual machine placement in cloud using artificial bee colony and imperialist competitive algorithm

    Get PDF
    Increasing resource efficiency and reducing energy consumption are significant challenges in cloud environments. Placing virtual machines is essential in improving cloud systems’ performance. This paper presents a hybrid method using the artificial bee colony and imperialist competitive algorithm to reduce provider costs and decrease client expenditure. Implementation of the proposed plan in the CloudSim simulation environment indicates the proposed method performs better than the Monarch butterfly optimization and salp swarm algorithms regarding energy consumption and resource usage. Moreover, average central processing unit (CPU) and random-access memory (RAM) usage and the number of host shutdowns show better results for the proposed model

    Stochastic Modeling and Performance Analysis of Energy-Aware Cloud Data Center Based on Dynamic Scalable Stochastic Petri Net

    Get PDF
    The characteristics of cloud computing, such as large-scale, dynamics, heterogeneity and diversity, present a range of challenges for the study on modeling and performance evaluation on cloud data centers. Performance evaluation not only finds out an appropriate trade-off between cost-benefit and quality of service (QoS) based on service level agreement (SLA), but also investigates the influence of virtualization technology. In this paper, we propose an Energy-Aware Optimization (EAO) algorithm with considering energy consumption, resource diversity and virtual machine migration. In addition, we construct a stochastic model for Energy-Aware Migration-Enabled Cloud (EAMEC) data centers by introducing Dynamic Scalable Stochastic Petri Net (DSSPN). Several performance parameters are defined to evaluate task backlogs, throughput, reject rate, utilization, and energy consumption under different runtime and machines. Finally, we use a tool called SPNP to simulate analytical solutions of these parameters. The analysis results show that DSSPN is applicable to model and evaluate complex cloud systems, and can help to optimize the performance of EAMEC data centers
    corecore