11,459 research outputs found

    Resource Allocation in Ad Hoc Networks

    No full text
    Unlike the centralized network, the ad hoc network does not have any central administrations and energy is constrained, e.g. battery, so the resource allocation plays a very important role in efficiently managing the limited energy in ad hoc networks. This thesis focuses on the resource allocation in ad hoc networks and aims to develop novel techniques that will improve the network performance from different network layers, such as the physical layer, Medium Access Control (MAC) layer and network layer. This thesis examines the energy utilization in High Speed Downlink Packet Access (HSDPA) systems at the physical layer. Two resource allocation techniques, known as channel adaptive HSDPA and two-group HSDPA, are developed to improve the performance of an ad hoc radio system through reducing the residual energy, which in turn, should improve the data rate in HSDPA systems. The channel adaptive HSDPA removes the constraint on the number of channels used for transmissions. The two-group allocation minimizes the residual energy in HSDPA systems and therefore enhances the physical data rates in transmissions due to adaptive modulations. These proposed approaches provide better data rate than rates achieved with the current HSDPA type of algorithm. By considering both physical transmission power and data rates for defining the cost function of the routing scheme, an energy-aware routing scheme is proposed in order to find the routing path with the least energy consumption. By focusing on the routing paths with low energy consumption, computational complexity is significantly reduced. The data rate enhancement achieved by two-group resource allocation further reduces the required amount of energy per bit for each path. With a novel load balancing technique, the information bits can be allocated to each path in such that a way the overall amount of energy consumed is minimized. After loading bits to multiple routing paths, an end-to-end delay minimization solution along a routing path is developed through studying MAC distributed coordination function (DCF) service time. Furthermore, the overhead effect and the related throughput reduction are studied. In order to enhance the network throughput at the MAC layer, two MAC DCF-based adaptive payload allocation approaches are developed through introducing Lagrange optimization and studying equal data transmission period

    On Energy Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks

    Full text link
    In this paper, a hierarchical cross-layer design approach is proposed to increase energy efficiency in ad hoc networks through joint adaptation of nodes' transmitting powers and route selection. The design maintains the advantages of the classic OSI model, while accounting for the cross-coupling between layers, through information sharing. The proposed joint power control and routing algorithm is shown to increase significantly the overall energy efficiency of the network, at the expense of a moderate increase in complexity. Performance enhancement of the joint design using multiuser detection is also investigated, and it is shown that the use of multiuser detection can increase the capacity of the ad hoc network significantly for a given level of energy consumption.Comment: To appear in the EURASIP Journal on Wireless Communications and Networking, Special Issue on Wireless Mobile Ad Hoc Network

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    • …
    corecore