10 research outputs found

    Group Sparse Precoding for Cloud-RAN with Multiple User Antennas

    Full text link
    Cloud radio access network (C-RAN) has become a promising network architecture to support the massive data traffic in the next generation cellular networks. In a C-RAN, a massive number of low-cost remote antenna ports (RAPs) are connected to a single baseband unit (BBU) pool via high-speed low-latency fronthaul links, which enables efficient resource allocation and interference management. As the RAPs are geographically distributed, the group sparse beamforming schemes attracts extensive studies, where a subset of RAPs is assigned to be active and a high spectral efficiency can be achieved. However, most studies assumes that each user is equipped with a single antenna. How to design the group sparse precoder for the multiple antenna users remains little understood, as it requires the joint optimization of the mutual coupling transmit and receive beamformers. This paper formulates an optimal joint RAP selection and precoding design problem in a C-RAN with multiple antennas at each user. Specifically, we assume a fixed transmit power constraint for each RAP, and investigate the optimal tradeoff between the sum rate and the number of active RAPs. Motivated by the compressive sensing theory, this paper formulates the group sparse precoding problem by inducing the â„“0\ell_0-norm as a penalty and then uses the reweighted â„“1\ell_1 heuristic to find a solution. By adopting the idea of block diagonalization precoding, the problem can be formulated as a convex optimization, and an efficient algorithm is proposed based on its Lagrangian dual. Simulation results verify that our proposed algorithm can achieve almost the same sum rate as that obtained from exhaustive search

    MIMO Beamforming for Secure and Energy-Efficient Wireless Communication

    Get PDF
    Considering a multiple-user multiple-input multiple-output (MIMO) channel with an eavesdropper, this letter develops a beamformer design to optimize the energy efficiency in terms of secrecy bits per Joule under secrecy quality-of-service constraints. This is a very difficult design problem with no available exact solution techniques. A path-following procedure, which iteratively improves its feasible points by using a simple quadratic program of moderate dimension, is proposed. Under any fixed computational tolerance the procedure terminates after finitely many iterations, yielding at least a locally optimal solution. Simulation results show the superior performance of the obtained algorithm over other existing methods.Comment: 12 pages, 2 figure

    Energy-Efficient Signalling in QoS Constrained Heterogeneous Networks

    Get PDF
    © 2013 IEEE. This paper considers a heterogeneous network, which consists of one macro base station and numerous small cell base stations (SBSs) cooperatively serving multiple user terminals. The first objective is to design cooperative transmit beamformers at the base stations to maximize the network energy efficiency (EE) in terms of bits per joule subject to the users' quality of service (QoS) constraints, which poses a computationally difficult optimization problem. The commonly used Dinkelbach-type algorithms for optimizing a ratio of concave and convex functions are not applicable. This paper develops a path-following algorithm to address the computational solution to this problem, which invokes only a simple convex quadratic program of moderate dimension at each iteration and quickly converges at least to a locally optimal solution. Furthermore, the problem of joint beamformer design and SBS service assignment in the three-objective (EE, QoS, and service loading) optimization is also addressed. Numerical results demonstrate the performance advantage of the proposed solutions

    Optimal Beamforming for Physical Layer Security in MISO Wireless Networks

    Get PDF
    A wireless network of multiple transmitter-user pairs overheard by an eavesdropper, where the transmitters are equipped with multiple antennas while the users and eavesdropper are equipped with a single antenna, is considered. At different levels of wireless channel knowledge, the problem of interest is beamforming to optimize the users' quality-of-service (QoS) in terms of their secrecy throughputs or maximize the network's energy efficiency under users' QoS. All these problems are seen as very difficult optimization problems with many nonconvex constraints and nonlinear equality constraints in beamforming vectors. The paper develops path-following computational procedures of low-complexity and rapid convergence for the optimal beamforming solution. Their practicability is demonstrated through numerical examples

    Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

    Full text link
    As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.Comment: Typos corrected. 14 pages, 7 figures. Accepted for publication on IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:2002.0488

    Capacity Enhancement of Multiuser Wireless Communication System through Adaptive Non-Linear Pre coding

    Get PDF
    Multiuser multiple-input multiple-output (MIMO) nonlinear pre coding techniques face the issue of poor computational scalability of the size of the network. But by this nonlinear pre coding technique the interference is pre-cancelled automatically and also provides better capacity. So in order to reduce the computational burden in this paper, a definitive issue of MU-MIMO scalability is tackled through a non-linear adaptive optimum vector perturbation technique. Unlike the conventional (Vector Perturbation) VP methods, here a novel anterograde tracing is utilized which is usually recognized in the nervous system thus reducing complexity. The tracing of distance can be done through an iterative-optimization procedure. By this novel non-linear technique the capacity is improved to a greater extend which is explained practically. By means of this, the computational complexity is managed to be in the cubic order of the size of MUMIMO, and this mainly derives from the inverse of the channel matrix. The proposed signal processing system has been implemented in the working platform of MATLAB/SIMULINK. The simulation results of proposed communication system and comparison with existing systems shows the significance of the proposed work

    Energy-efficient precoding in multicell networks with full-duplex base stations

    Get PDF
    © 2017, The Author(s). This paper considers multi-input multi-output (MIMO) multicell networks, where the base stations (BSs) are full-duplex transceivers, while uplink and downlink users are equipped with multiple antennas and operate in a half-duplex mode. The problem of interest is to design linear precoders for BSs and users to optimize the network’s energy efficiency. Given that the energy efficiency objective is not a ratio of concave and convex functions, the commonly used Dinkelbach-type algorithms are not applicable. We develop a low-complexity path-following algorithm that only invokes one simple convex quadratic program at each iteration, which converges at least to the local optimum. Numerical results demonstrate the performance advantage of our proposed algorithm in terms of energy efficiency

    Interference Management Based on RT/nRT Traffic Classification for FFR-Aided Small Cell/Macrocell Heterogeneous Networks

    Full text link
    Cellular networks are constantly lagging in terms of the bandwidth needed to support the growing high data rate demands. The system needs to efficiently allocate its frequency spectrum such that the spectrum utilization can be maximized while ensuring the quality of service (QoS) level. Owing to the coexistence of different types of traffic (e.g., real-time (RT) and non-real-time (nRT)) and different types of networks (e.g., small cell and macrocell), ensuring the QoS level for different types of users becomes a challenging issue in wireless networks. Fractional frequency reuse (FFR) is an effective approach for increasing spectrum utilization and reducing interference effects in orthogonal frequency division multiple access networks. In this paper, we propose a new FFR scheme in which bandwidth allocation is based on RT/nRT traffic classification. We consider the coexistence of small cells and macrocells. After applying FFR technique in macrocells, the remaining frequency bands are efficiently allocated among the small cells overlaid by a macrocell. In our proposed scheme, total frequency-band allocations for different macrocells are decided on the basis of the traffic intensity. The transmitted power levels for different frequency bands are controlled based on the level of interference from a nearby frequency band. Frequency bands with a lower level of interference are assigned to the RT traffic to ensure a higher QoS level for the RT traffic. RT traffic calls in macrocell networks are also given a higher priority compared with nRT traffic calls to ensure the low call-blocking rate. Performance analyses show significant improvement under the proposed scheme compared with conventional FFR schemes

    Energy-Efficient Zero-Forcing Precoding Design for Small-Cell Networks

    Get PDF
    We consider small-cell networks with multiple antenna transceivers and base stations (BSs) cooperating to jointly design linear precoders to maximize the network energy efficiency, subject to a sum power and per-antenna power constraints at individual BSs, as well as user-specific quality of service (QoS) requirements. Assuming zero-forcing precoding, we formulate the problem of interest as a concave–convex fractional program to which we proposed a centralized optimal solution based on the prevailing Dinkelbach algorithm. To facilitate distributed implementations, we transform the design problem into an equivalent convex program using Charnes–Cooper’s transformation. Then, based on the framework of alternative direction method of multipliers (ADMM), we develop a decentralized algorithm, which is numerically shown to achieve fast convergence. Since BSs are generally power-hungry, it may be more energy-efficient if some BSs can be shut down, while still satisfying the QoS constraints. Toward this end, we investigate the problem of joint precoder design and BS selection, which is a mixed Boolean nonlinear program, and then provide an optimal solution by customizing the branch-and-bound method. For real-time applications, we propose a greedy algorithm which achieves near-optimal performance in polynomial time. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms
    corecore