364 research outputs found

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Heuristic optimization of electrical energy systems: Refined metrics to compare the solutions

    Get PDF
    Many optimization problems admit a number of local optima, among which there is the global optimum. For these problems, various heuristic optimization methods have been proposed. Comparing the results of these solvers requires the definition of suitable metrics. In the electrical energy systems literature, simple metrics such as best value obtained, the mean value, the median or the standard deviation of the solutions are still used. However, the comparisons carried out with these metrics are rather weak, and on these bases a somehow uncontrolled proliferation of heuristic solvers is taking place. This paper addresses the overall issue of understanding the reasons of this proliferation, showing a conceptual scheme that indicates how the assessment of the best solver may result in the unlimited formulation of new solvers. Moreover, this paper shows how the use of more refined metrics defined to compare the optimization result, associated with the definition of appropriate benchmarks, may make the comparisons among the solvers more robust. The proposed metrics are based on the concept of first-order stochastic dominance and are defined for the cases in which: (i) the globally optimal solution can be found (for testing purposes); and (ii) the number of possible solutions is so large that practically it cannot be guaranteed that the global optimum has been found. Illustrative examples are provided for a typical problem in the electrical energy systems area – distribution network reconfiguration. The conceptual results obtained are generally valid to compare the results of other optimization problem

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Optimal coordination of TCSC and PSS2B controllers in electric power systems using MOPSO multiobjective algorithm

    Get PDF
    Oscillations are an intrinsic phenomenon in interconnected power systems, leading to steady-state stability, safety decline, transmission power limitation, and electric power systems’ ineffective exploitation by developing power systems, particularly by connecting these systems to low-load lines. In addition, they affect the economic performance of the systems. In this study, PSS2B power system stabilizers and TCSC compensators are used to improve the stability margin of power systems. In order to coordinate TCSC compensators, the MOPSO multiobjective algorithm with integral of the time-weighted absolute error (ITAE) and figure of demerit (FD) objective functions was used. The MOPSO algorithm optimization results are compared with nondominated sorting genetic algorithm (NSGAII) and multiobjective differential evolution (MODE) algorithms. The optimization results indicated a better performance of the proposed MOPSO algorithm than NSGAII and MODE. The simulations were iterated in two scenarios by creating different loading conditions in generators. The results indicated that the proposed control system, where the coordination between PSS2B power system stabilizers and TCSC compensators using the MOPSO algorithm, is better than power systems in which PSS2B Stabilizers or TCSC compensators are utilized solely. All criteria, e.g., ITAE, FD, maximum deviation range, and the required time for power oscillation damping in hybrid control systems, have been obtained. This means more stability and accurate and proper performance

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    Contributions to the development of the CRO-SL algorithm: Engineering applications problems

    Get PDF
    This Ph.D. thesis discusses advanced design issues of the evolutionary-based algorithm \textit{"Coral Reef Optimization"}, in its Substrate-Layer (CRO-SL) version, for optimization problems in Engineering Applications. The problems that can be tackled with meta-heuristic approaches is very wide and varied, and it is not exclusive of engineering. However we focus the Thesis on it area, one of the most prominent in our time. One of the proposed application is battery scheduling problem in Micro-Grids (MGs). Specifically, we consider an MG that includes renewable distributed generation and different loads, defined by its power profiles, and is equipped with an energy storage device (battery) to address its programming (duration of loading / discharging and occurrence) in a real scenario with variable electricity prices. Also, we discuss a problem of vibration cancellation over structures of two and four floors, using Tuned Mass Dampers (TMD's). The optimization algorithm will try to find the best solution by obtaining three physical parameters and the TMD location. As another related application, CRO-SL is used to design Multi-Input-Multi-Output Active Vibration Control (MIMO-AVC) via inertial-mass actuators, for structures subjected to human induced vibration. In this problem, we will optimize the location of each actuator and tune control gains. Finally, we tackle the optimization of a textile modified meander-line Inverted-F Antenna (IFA) with variable width and spacing meander, for RFID systems. Specifically, the CRO-SL is used to obtain an optimal antenna design, with a good bandwidth and radiation pattern, ideal for RFID readers. Radio Frequency Identification (RFID) has become one of the most numerous manufactured devices worldwide due to a reliable and inexpensive means of locating people. They are used in access and money cards and product labels and many other applications.Comment: arXiv admin note: text overlap with arXiv:1806.02654 by other author

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    • 

    corecore