3 research outputs found

    Enabling Usable and Performant Trusted Execution

    Full text link
    A plethora of major security incidents---in which personal identifiers belonging to hundreds of millions of users were stolen---demonstrate the importance of improving the security of cloud systems. To increase security in the cloud environment, where resource sharing is the norm, we need to rethink existing approaches from the ground-up. This thesis analyzes the feasibility and security of trusted execution technologies as the cornerstone of secure software systems, to better protect users' data and privacy. Trusted Execution Environments (TEE), such as Intel SGX, has the potential to minimize the Trusted Computing Base (TCB), but they also introduce many challenges for adoption. Among these challenges are TEE's significant impact on applications' performance and non-trivial effort required to migrate legacy systems to run on these secure execution technologies. Other challenges include managing a trustworthy state across a distributed system and ensuring these individual machines are resilient to micro-architectural attacks. In this thesis, I first characterize the performance bottlenecks imposed by SGX and suggest optimization strategies. I then address two main adoption challenges for existing applications: managing permissions across a distributed system and scaling the SGX's mechanism for proving authenticity and integrity. I then analyze the resilience of trusted execution technologies to speculative execution, micro-architectural attacks, which put cloud infrastructure at risk. This analysis revealed a devastating security flaw in Intel's processors which is known as Foreshadow/L1TF. Finally, I propose a new architectural design for out-of-order processors which defeats all known speculative execution attacks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155139/1/oweisse_1.pd

    A prescriptive analytics approach for energy efficiency in datacentres.

    Get PDF
    Given the evolution of Cloud Computing in recent years, users and clients adopting Cloud Computing for both personal and business needs have increased at an unprecedented scale. This has naturally led to the increased deployments and implementations of Cloud datacentres across the globe. As a consequence of this increasing adoption of Cloud Computing, Cloud datacentres are witnessed to be massive energy consumers and environmental polluters. Whilst the energy implications of Cloud datacentres are being addressed from various research perspectives, predicting the future trend and behaviours of workloads at the datacentres thereby reducing the active server resources is one particular dimension of green computing gaining the interests of researchers and Cloud providers. However, this includes various practical and analytical challenges imposed by the increased dynamism of Cloud systems. The behavioural characteristics of Cloud workloads and users are still not perfectly clear which restrains the reliability of the prediction accuracy of existing research works in this context. To this end, this thesis presents a comprehensive descriptive analytics of Cloud workload and user behaviours, uncovering the cause and energy related implications of Cloud Computing. Furthermore, the characteristics of Cloud workloads and users including latency levels, job heterogeneity, user dynamicity, straggling task behaviours, energy implications of stragglers, job execution and termination patterns and the inherent periodicity among Cloud workload and user behaviours have been empirically presented. Driven by descriptive analytics, a novel user behaviour forecasting framework has been developed, aimed at a tri-fold forecast of user behaviours including the session duration of users, anticipated number of submissions and the arrival trend of the incoming workloads. Furthermore, a novel resource optimisation framework has been proposed to avail the most optimum level of resources for executing jobs with reduced server energy expenditures and job terminations. This optimisation framework encompasses a resource estimation module to predict the anticipated resource consumption level for the arrived jobs and a classification module to classify tasks based on their resource intensiveness. Both the proposed frameworks have been verified theoretically and tested experimentally based on Google Cloud trace logs. Experimental analysis demonstrates the effectiveness of the proposed framework in terms of the achieved reliability of the forecast results and in reducing the server energy expenditures spent towards executing jobs at the datacentres.N/
    corecore