1,264 research outputs found

    Energy-Efficient NOMA Enabled Heterogeneous Cloud Radio Access Networks

    Get PDF
    Heterogeneous cloud radio access networks (H-CRANs) are envisioned to be promising in the fifth generation (5G) wireless networks. H-CRANs enable users to enjoy diverse services with high energy efficiency, high spectral efficiency, and low-cost operation, which are achieved by using cloud computing and virtualization techniques. However, H-CRANs face many technical challenges due to massive user connectivity, increasingly severe spectrum scarcity and energy-constrained devices. These challenges may significantly decrease the quality of service of users if not properly tackled. Non-orthogonal multiple access (NOMA) schemes exploit non-orthogonal resources to provide services for multiple users and are receiving increasing attention for their potential of improving spectral and energy efficiency in 5G networks. In this article a framework for energy-efficient NOMA H-CRANs is presented. The enabling technologies for NOMA H-CRANs are surveyed. Challenges to implement these technologies and open issues are discussed. This article also presents the performance evaluation on energy efficiency of H-CRANs with NOMA.Comment: This work has been accepted by IEEE Network. Pages 18, Figure

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Performance Analysis of Micro Unmanned Airborne Communication Relays for Cellular Networks

    Full text link
    This paper analyses the potential of utilising small unmanned-aerial-vehicles (SUAV) as wireless relays for assisting cellular network performance. Whilst high altitude wireless relays have been investigated over the past 2 decades, the new class of low cost SUAVs offers new possibilities for addressing local traffic imbalances and providing emergency coverage.We present field-test results from an SUAV test-bed in both urban and rural environments. The results show that trough-to-peak throughput improvements can be achieved for users in poor coverage zones. Furthermore, the paper reinforces the experimental study with large-scale network analysis using both stochastic geometry and multi-cell simulation results.Comment: conferenc

    Spectral Efficient and Energy Aware Clustering in Cellular Networks

    Full text link
    The current and envisaged increase of cellular traffic poses new challenges to Mobile Network Operators (MNO), who must densify their Radio Access Networks (RAN) while maintaining low Capital Expenditure and Operational Expenditure to ensure long-term sustainability. In this context, this paper analyses optimal clustering solutions based on Device-to-Device (D2D) communications to mitigate partially or completely the need for MNOs to carry out extremely dense RAN deployments. Specifically, a low complexity algorithm that enables the creation of spectral efficient clusters among users from different cells, denoted as enhanced Clustering Optimization for Resources' Efficiency (eCORE) is presented. Due to the imbalance between uplink and downlink traffic, a complementary algorithm, known as Clustering algorithm for Load Balancing (CaLB), is also proposed to create non-spectral efficient clusters when they result in a capacity increase. Finally, in order to alleviate the energy overconsumption suffered by cluster heads, the Clustering Energy Efficient algorithm (CEEa) is also designed to manage the trade-off between the capacity enhancement and the early battery drain of some users. Results show that the proposed algorithms increase the network capacity and outperform existing solutions, while, at the same time, CEEa is able to handle the cluster heads energy overconsumption
    • …
    corecore