775 research outputs found

    General Rank Multiuser Downlink Beamforming With Shaping Constraints Using Real-valued OSTBC

    Full text link
    In this paper we consider optimal multiuser downlink beamforming in the presence of a massive number of arbitrary quadratic shaping constraints. We combine beamforming with full-rate high dimensional real-valued orthogonal space time block coding (OSTBC) to increase the number of beamforming weight vectors and associated degrees of freedom in the beamformer design. The original multi-constraint beamforming problem is converted into a convex optimization problem using semidefinite relaxation (SDR) which can be solved efficiently. In contrast to conventional (rank-one) beamforming approaches in which an optimal beamforming solution can be obtained only when the SDR solution (after rank reduction) exhibits the rank-one property, in our approach optimality is guaranteed when a rank of eight is not exceeded. We show that our approach can incorporate up to 79 additional shaping constraints for which an optimal beamforming solution is guaranteed as compared to a maximum of two additional constraints that bound the conventional rank-one downlink beamforming designs. Simulation results demonstrate the flexibility of our proposed beamformer design

    Symbol-Level Multiuser MISO Precoding for Multi-level Adaptive Modulation

    Get PDF
    Symbol-level precoding is a new paradigm for multiuser downlink systems which aims at creating constructive interference among the transmitted data streams. This can be enabled by designing the precoded signal of the multiantenna transmitter on a symbol level, taking into account both channel state information and data symbols. Previous literature has studied this paradigm for MPSK modulations by addressing various performance metrics, such as power minimization and maximization of the minimum rate. In this paper, we extend this to generic multi-level modulations i.e. MQAM and APSK by establishing connection to PHY layer multicasting with phase constraints. Furthermore, we address adaptive modulation schemes which are crucial in enabling the throughput scaling of symbol-level precoded systems. In this direction, we design signal processing algorithms for minimizing the required power under per-user SINR or goodput constraints. Extensive numerical results show that the proposed algorithm provides considerable power and energy efficiency gains, while adapting the employed modulation scheme to match the requested data rate
    • …
    corecore