2 research outputs found

    Sparse Beamforming and User-Centric Clustering for Downlink Cloud Radio Access Network

    Full text link
    This paper considers a downlink cloud radio access network (C-RAN) in which all the base-stations (BSs) are connected to a central computing cloud via digital backhaul links with finite capacities. Each user is associated with a user-centric cluster of BSs; the central processor shares the user's data with the BSs in the cluster, which then cooperatively serve the user through joint beamforming. Under this setup, this paper investigates the user scheduling, BS clustering and beamforming design problem from a network utility maximization perspective. Differing from previous works, this paper explicitly considers the per-BS backhaul capacity constraints. We formulate the network utility maximization problem for the downlink C-RAN under two different models depending on whether the BS clustering for each user is dynamic or static over different user scheduling time slots. In the former case, the user-centric BS cluster is dynamically optimized for each scheduled user along with the beamforming vector in each time-frequency slot, while in the latter case the user-centric BS cluster is fixed for each user and we jointly optimize the user scheduling and the beamforming vector to account for the backhaul constraints. In both cases, the nonconvex per-BS backhaul constraints are approximated using the reweighted l1-norm technique. This approximation allows us to reformulate the per-BS backhaul constraints into weighted per-BS power constraints and solve the weighted sum rate maximization problem through a generalized weighted minimum mean square error approach. This paper shows that the proposed dynamic clustering algorithm can achieve significant performance gain over existing naive clustering schemes. This paper also proposes two heuristic static clustering schemes that can already achieve a substantial portion of the gain.Comment: 14 pages, 9 figures, to appear in IEEE Access, Special Issue on Recent Advances in Cloud Radio Access Networks, 201

    Energy Efficiency of Downlink Transmission Strategies for Cloud Radio Access Networks

    Full text link
    This paper studies the energy efficiency of the cloud radio access network (C-RAN), specifically focusing on two fundamental and different downlink transmission strategies, namely the data-sharing strategy and the compression strategy. In the data-sharing strategy, the backhaul links connecting the central processor (CP) and the base-stations (BSs) are used to carry user messages -- each user's messages are sent to multiple BSs; the BSs locally form the beamforming vectors then cooperatively transmit the messages to the user. In the compression strategy, the user messages are precoded centrally at the CP, which forwards a compressed version of the analog beamformed signals to the BSs for cooperative transmission. This paper compares the energy efficiencies of the two strategies by formulating an optimization problem of minimizing the total network power consumption subject to user target rate constraints, where the total network power includes the BS transmission power, BS activation power, and load-dependent backhaul power. To tackle the discrete and nonconvex nature of the optimization problems, we utilize the techniques of reweighted β„“1\ell_1 minimization and successive convex approximation to devise provably convergent algorithms. Our main finding is that both the optimized data-sharing and compression strategies in C-RAN achieve much higher energy efficiency as compared to the non-optimized coordinated multi-point transmission, but their comparative effectiveness in energy saving depends on the user target rate. At low user target rate, data-sharing consumes less total power than compression, however, as the user target rate increases, the backhaul power consumption for data-sharing increases significantly leading to better energy efficiency of compression at the high user rate regime.Comment: 14 pages, 8 figures, accepted by JSAC Energy-Efficient Techniques for 5G Wireless Communication Systems special issu
    corecore