23 research outputs found

    Planning of Cellular Networks Enhanced by Energy Harvesting

    Full text link
    We pose a novel cellular network planning problem, considering the use of renewable energy sources and a fundamentally new concept of energy balancing, and propose a novel algorithm to solve it. In terms of the network capital and operational expenditure, we conclude that savings can be made by enriching cellular infrastructure with energy harvesting sources, in comparison to traditional deployment methods.Comment: accepted to IEEE Communications Letters [source code available

    Cost-Aware Green Cellular Networks with Energy and Communication Cooperation

    Full text link
    Energy cost of cellular networks is ever-increasing to match the surge of wireless data traffic, and the saving of this cost is important to reduce the operational expenditure (OPEX) of wireless operators in future. The recent advancements of renewable energy integration and two-way energy flow in smart grid provide potential new solutions to save the cost. However, they also impose challenges, especially on how to use the stochastically and spatially distributed renewable energy harvested at cellular base stations (BSs) to reliably supply time- and space-varying wireless traffic over cellular networks. To overcome these challenges, in this article we present three approaches, namely, {\emph{energy cooperation, communication cooperation, and joint energy and communication cooperation}}, in which different BSs bidirectionally trade or share energy via the aggregator in smart grid, and/or share wireless resources and shift loads with each other to reduce the total energy cost.Comment: Submitted for possible publicatio

    Cooperative Energy Trading in CoMP Systems Powered by Smart Grids

    Full text link
    This paper studies the energy management in the coordinated multi-point (CoMP) systems powered by smart grids, where each base station (BS) with local renewable energy generation is allowed to implement the two-way energy trading with the grid. Due to the uneven renewable energy supply and communication energy demand over distributed BSs as well as the difference in the prices for their buying/selling energy from/to the gird, it is beneficial for the cooperative BSs to jointly manage their energy trading with the grid and energy consumption in CoMP based communication for reducing the total energy cost. Specifically, we consider the downlink transmission in one CoMP cluster by jointly optimizing the BSs' purchased/sold energy units from/to the grid and their cooperative transmit precoding, so as to minimize the total energy cost subject to the given quality of service (QoS) constraints for the users. First, we obtain the optimal solution to this problem by developing an algorithm based on techniques from convex optimization and the uplink-downlink duality. Next, we propose a sub-optimal solution of lower complexity than the optimal solution, where zero-forcing (ZF) based precoding is implemented at the BSs. Finally, through extensive simulations, we show the performance gain achieved by our proposed joint energy trading and communication cooperation schemes in terms of energy cost reduction, as compared to conventional schemes that separately design communication cooperation and energy trading
    corecore