165 research outputs found

    Demand response from thermostatically controlled loads: modelling, control and system-level value

    Get PDF
    The research area of this thesis concerns the efficient and secure operation of the future low-carbon power system, where alternative sources of control and flexibility will progressively replace the traditional providers of ancillary services i.e. conventional generators. Various options are engaged in this challenge and suit the innovative concept of Smart Grid. Specifically, this thesis investigates the potential of demand side response support by means of thermostatically controlled loads (TCLs). This thesis aims to quantify the impact that a population of thermostatically controlled loads has on the commitment and dispatch of a future power system characterized by a large penetration of renewable energy sources (e.g. wind) that are variable and intermittent. Thanks to their relative insensitivity to temperature fluctuations, thermostatic loads would be able to provide frequency response services and other forms of system services, such as energy arbitrage and congestion relief. These actions in turn enhance the power system operation and support the strict compliance with system security standards. However, the achievement of this transition requires addressing two challenges. The first deals with the design of accurate device models. Significant differences affect the devices’ design included in the same class, leading to different system-level performances. In addition, the flexibility associated to TCLs would be handled more easily by means of models that describes the TCLs dynamics directly as a cluster rather than considering the appliances individually. Second, it is not straightforward achieving satisfactory controllability of a cluster of TCLs for the considered applications. The complexity lies in the typical operation of these devices that has only two power states (on and off) whereas the desired response is continuous. Moreover the control strategy has always to comply with strict device-level temperature constraints as the provision of ancillary services cannot affect the quality of the service of the primary function of TCLs. This thesis addresses the challenges exhibited. Detailed thermal dynamic models are derived for eight classes of domestic and commercial refrigeration units. In addition, a heterogeneous population of TCLs is modelled as a leaky storage unit; this unit describes the aggregate flexibility of a large population of TCLs as a single storage unit incorporating the devices’ physical thermal models and their operational temperature limits. The control problem is solved by means of an initial hybrid controller for frequency response purposes that is afterwards replaced by an advanced controller for various applications. Provided these two elements, a novel demand side response model is designed considering the simultaneous provision of a number of system services and taking into account the effect of the load energy recovery. The model, included in a stochastic scheduling routine, quantifies the system-level operational cost and wind curtailment savings enabled by the TCLs support.Open Acces

    Value of thermostatic loads in future low-carbon Great Britain system

    Get PDF
    This paper quantifies the value of a large population of heterogeneous thermostatically controlled loads (TCLs). The TCL dynamics are regulated by means of an advanced demand side response model (DSRM). It optimally determines the flexible energy/power consumption and simultaneously allocates multiple ancillary services. This model explicitly incorporates the control of dynamics of the TCL recovery pattern after the provision of the selected services. The proposed framework is integrated in a mixed integer linear programming formulation for a multi-stage stochastic unit commitment. The scheduling routine considers inertia-dependent frequency response requirements to deal with the drastic reduction of system inertia under future low-carbon scenarios. Case studies focus on the system operation cost and CO2 emissions reductions for individual TCLs for a) different future network scenarios, b) different frequency requirements, c) changes of TCL parameters (e.g. coefficient of performance, thermal insulation etc.)

    Improved Battery Models of an Aggregation of Thermostatically Controlled Loads for Frequency Regulation

    Full text link
    Recently it has been shown that an aggregation of Thermostatically Controlled Loads (TCLs) can be utilized to provide fast regulating reserve service for power grids and the behavior of the aggregation can be captured by a stochastic battery with dissipation. In this paper, we address two practical issues associated with the proposed battery model. First, we address clustering of a heterogeneous collection and show that by finding the optimal dissipation parameter for a given collection, one can divide these units into few clusters and improve the overall battery model. Second, we analytically characterize the impact of imposing a no-short-cycling requirement on TCLs as constraints on the ramping rate of the regulation signal. We support our theorems by providing simulation results.Comment: to appear in the 2014 American Control Conference - AC

    Battery Capacity of Deferrable Energy Demand

    Full text link
    We investigate the ability of a homogeneous collection of deferrable energy loads to behave as a battery; that is, to absorb and release energy in a controllable fashion up to fixed and predetermined limits on volume, charge rate and discharge rate. We derive bounds on the battery capacity that can be realized and show that there are fundamental trade-offs between battery parameters. By characterizing the state trajectories under scheduling policies that emulate two illustrative batteries, we show that the trade-offs occur because the states that allow the loads to absorb and release energy at high aggregate rates are conflicting

    Designing effective frequency response patterns for flexible thermostatic loads

    Get PDF
    • …
    corecore