4,691 research outputs found

    Computation Efficiency Maximization in Wireless-Powered Mobile Edge Computing Networks

    Full text link
    Energy-efficient computation is an inevitable trend for mobile edge computing (MEC) networks. Resource allocation strategies for maximizing the computation efficiency are critically important. In this paper, computation efficiency maximization problems are formulated in wireless-powered MEC networks under both partial and binary computation offloading modes. A practical non-linear energy harvesting model is considered. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) are considered and evaluated for offloading. The energy harvesting time, the local computing frequency, and the offloading time and power are jointly optimized to maximize the computation efficiency under the max-min fairness criterion. Two iterative algorithms and two alternative optimization algorithms are respectively proposed to address the non-convex problems formulated in this paper. Simulation results show that the proposed resource allocation schemes outperform the benchmark schemes in terms of user fairness. Moreover, a tradeoff is elucidated between the achievable computation efficiency and the total number of computed bits. Furthermore, simulation results demonstrate that the partial computation offloading mode outperforms the binary computation offloading mode and NOMA outperforms TDMA in terms of computation efficiency.Comment: This paper has been accepted for publication in IEEE Transactions on Wireless Communication

    Computation Rate Maximization for Wireless Powered Mobile Edge Computing

    Full text link
    Integrating mobile edge computing (MEC) and wireless power transfer (WPT) has been regarded as a promising technique to improve computation capabilities for self-sustainable Internet of Things (IoT) devices. This paper investigates a wireless powered multiuser MEC system, where a multi-antenna access point (AP) (integrated with an MEC server) broadcasts wireless power to charge multiple users for mobile computing. We consider a time-division multiple access (TDMA) protocol for multiuser computation offloading. Under this setup, we aim to maximize the weighted sum of the computation rates (in terms of the number of computation bits) across all the users, by jointly optimizing the energy transmit beamformer at the AP, the task partition for the users (for local computing and offloading, respectively), and the time allocation among the users. We derive the optimal solution in a semi-closed form via convex optimization techniques. Numerical results show the merit of the proposed design over alternative benchmark schemes.Comment: 6 pages and 2 figure

    Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices

    Full text link
    Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost, which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm, namely, the Lyapunov optimization-based dynamic computation offloading (LODCO) algorithm is proposed, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the instantaneous side information without requiring distribution information of the computation task request, the wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to verify the theoretical analysis as well as validate the effectiveness of the proposed algorithm.Comment: 33 pages, 11 figures, submitted to IEEE Journal on Selected Areas in Communication

    Computation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation Offloading

    Full text link
    In this paper, we consider a multi-user mobile edge computing (MEC) network powered by wireless power transfer (WPT), where each energy-harvesting WD follows a binary computation offloading policy, i.e., data set of a task has to be executed as a whole either locally or remotely at the MEC server via task offloading. In particular, we are interested in maximizing the (weighted) sum computation rate of all the WDs in the network by jointly optimizing the individual computing mode selection (i.e., local computing or offloading) and the system transmission time allocation (on WPT and task offloading). The major difficulty lies in the combinatorial nature of multi-user computing mode selection and its strong coupling with transmission time allocation. To tackle this problem, we first consider a decoupled optimization, where we assume that the mode selection is given and propose a simple bi-section search algorithm to obtain the conditional optimal time allocation. On top of that, a coordinate descent method is devised to optimize the mode selection. The method is simple in implementation but may suffer from high computational complexity in a large-size network. To address this problem, we further propose a joint optimization method based on the ADMM (alternating direction method of multipliers) decomposition technique, which enjoys much slower increase of computational complexity as the networks size increases. Extensive simulations show that both the proposed methods can efficiently achieve near-optimal performance under various network setups, and significantly outperform the other representative benchmark methods considered.Comment: This paper has been accepted for publication in IEEE Transactions on Wireless Communication

    Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading (Extended Version)

    Full text link
    Mobile-edge computation offloading (MECO) offloads intensive mobile computation to clouds located at the edges of cellular networks. Thereby, MECO is envisioned as a promising technique for prolonging the battery lives and enhancing the computation capacities of mobiles. In this paper, we study resource allocation for a multiuser MECO system based on time-division multiple access (TDMA) and orthogonal frequency-division multiple access (OFDMA). First, for the TDMA MECO system with infinite or finite computation capacity, the optimal resource allocation is formulated as a convex optimization problem for minimizing the weighted sum mobile energy consumption under the constraint on computation latency. The optimal policy is proved to have a threshold-based structure with respect to a derived offloading priority function, which yields priorities for users according to their channel gains and local computing energy consumption. As a result, users with priorities above and below a given threshold perform complete and minimum offloading, respectively. Moreover, for the cloud with finite capacity, a sub-optimal resource-allocation algorithm is proposed to reduce the computation complexity for computing the threshold. Next, we consider the OFDMA MECO system, for which the optimal resource allocation is formulated as a non-convex mixed-integer problem. To solve this challenging problem and characterize its policy structure, a sub-optimal low-complexity algorithm is proposed by transforming the OFDMA problem to its TDMA counterpart. The corresponding resource allocation is derived by defining an average offloading priority function and shown to have close-to-optimal performance by simulation.Comment: Accepted to IEEE Trans. on Wireless Communicatio

    UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design

    Full text link
    With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of short-distance line-of-sight achieved by leveraging unmanned aerial vehicle (UAV) communications, an UAV-enabled wireless powered MEC system is studied. A power minimization problem is formulated subject to the constraints on the number of the computation bits and energy harvesting causality. The problem is non-convex and challenging to tackle. An alternative optimization algorithm is proposed based on sequential convex optimization. Simulation results show that our proposed design is superior to other benchmark schemes and the proposed algorithm is efficient in terms of the convergence.Comment: This paper has been accepted by IEEE ICC 201

    Computation Rate Maximization in UAV-Enabled Wireless Powered Mobile-Edge Computing Systems

    Full text link
    Mobile edge computing (MEC) and wireless power transfer (WPT) are two promising techniques to enhance the computation capability and to prolong the operational time of low-power wireless devices that are ubiquitous in Internet of Things. However, the computation performance and the harvested energy are significantly impacted by the severe propagation loss. In order to address this issue, an unmanned aerial vehicle (UAV)-enabled MEC wireless powered system is studied in this paper. The computation rate maximization problems in a UAV-enabled MEC wireless powered system are investigated under both partial and binary computation offloading modes, subject to the energy harvesting causal constraint and the UAV's speed constraint. These problems are non-convex and challenging to solve. A two-stage algorithm and a three-stage alternative algorithm are respectively proposed for solving the formulated problems. The closed-form expressions for the optimal central processing unit frequencies, user offloading time, and user transmit power are derived. The optimal selection scheme on whether users choose to locally compute or offload computation tasks is proposed for the binary computation offloading mode. Simulation results show that our proposed resource allocation schemes outperforms other benchmark schemes. The results also demonstrate that the proposed schemes converge fast and have low computational complexity.Comment: This paper has been accepted by IEEE JSA

    Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing

    Full text link
    Mobile-edge cloud computing is a new paradigm to provide cloud computing capabilities at the edge of pervasive radio access networks in close proximity to mobile users. In this paper, we first study the multi-user computation offloading problem for mobile-edge cloud computing in a multi-channel wireless interference environment. We show that it is NP-hard to compute a centralized optimal solution, and hence adopt a game theoretic approach for achieving efficient computation offloading in a distributed manner. We formulate the distributed computation offloading decision making problem among mobile device users as a multi-user computation offloading game. We analyze the structural property of the game and show that the game admits a Nash equilibrium and possesses the finite improvement property. We then design a distributed computation offloading algorithm that can achieve a Nash equilibrium, derive the upper bound of the convergence time, and quantify its efficiency ratio over the centralized optimal solutions in terms of two important performance metrics. We further extend our study to the scenario of multi-user computation offloading in the multi-channel wireless contention environment. Numerical results corroborate that the proposed algorithm can achieve superior computation offloading performance and scale well as the user size increases.Comment: The paper has been accepted by IEEE/ACM Transactions on Networking, Sept. 2015. arXiv admin note: substantial text overlap with arXiv:1404.320

    Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

    Full text link
    Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobile users in executing computation-intensive tasks via task offloading. The problem of Joint Task Offloading and Resource Allocation (JTORA) is studied in order to maximize the users' task offloading gains, which is measured by the reduction in task completion time and energy consumption. The considered problem is formulated as a Mixed Integer Non-linear Program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the NP-hardness of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, our approach is to decompose the original problem into (i) a Resource Allocation (RA) problem with fixed task offloading decision and (ii) a Task Offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Numerical simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches

    Optimal Resource Allocation for Wireless Powered Mobile Edge Computing with Dynamic Task Arrivals

    Full text link
    This paper considers a wireless powered multiuser mobile edge computing (MEC) system, where a multi-antenna access point (AP) employs the radio-frequency (RF) signal based wireless power transfer (WPT) to charge a number of distributed users, and each user utilizes the harvested energy to execute computation tasks via local computing and task offloading. We consider the frequency division multiple access (FDMA) protocol to support simultaneous task offloading from multiple users to the AP. Different from previous works that considered one-shot optimization with static task models, we study the joint computation and wireless resource allocation optimization with dynamic task arrivals over a finite time horizon consisting of multiple slots. Under this setup, our objective is to minimize the system energy consumption including the AP's transmission energy and the MEC server's computing energy over the whole horizon, by jointly optimizing the transmit energy beamforming at the AP, and the local computing and task offloading strategies at the users over different time slots. To characterize the fundamental performance limit of such systems, we focus on the offline optimization by assuming the task and channel information are known a-priori at the AP. In this case, the energy minimization problem corresponds to a convex optimization problem. Leveraging the Lagrange duality method, we obtain the optimal solution to this problem in a well structure. It is shown that in order to maximize the system energy efficiency, the optimal number of task input-bits at each user and the AP are monotonically increasing over time, and the offloading strategies at different users depend on both the wireless channel conditions and the task load at the AP. Numerical results demonstrate the benefit of the proposed joint-WPT-MEC design over alternative benchmark schemes without such joint design.Comment: 7 pages, 3 figures, and Accepted by IEEE ICC 2019, Shanghai, Chin
    • …
    corecore