4,194 research outputs found

    Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots

    Full text link
    We consider a massive MU-MIMO downlink time-division duplex system where a base station (BS) equipped with many antennas serves several single-antenna users in the same time-frequency resource. We assume that the BS uses linear precoding for the transmission. To reliably decode the signals transmitted from the BS, each user should have an estimate of its channel. In this work, we consider an efficient channel estimation scheme to acquire CSI at each user, called beamforming training scheme. With the beamforming training scheme, the BS precodes the pilot sequences and forwards to all users. Then, based on the received pilots, each user uses minimum mean-square error channel estimation to estimate the effective channel gains. The channel estimation overhead of this scheme does not depend on the number of BS antennas, and is only proportional to the number of users. We then derive a lower bound on the capacity for maximum-ratio transmission and zero-forcing precoding techniques which enables us to evaluate the spectral efficiency taking into account the spectral efficiency loss associated with the transmission of the downlink pilots. Comparing with previous work where each user uses only the statistical channel properties to decode the transmitted signals, we see that the proposed beamforming training scheme is preferable for moderate and low-mobility environments.Comment: Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 201

    Doubly Massive mmWave MIMO Systems: Using Very Large Antenna Arrays at Both Transmitter and Receiver

    Get PDF
    One of the key features of next generation wireless communication systems will be the use of frequencies in the range 10-100GHz (aka mmWave band) in densely populated indoor and outdoor scenarios. Due to the reduced wavelength, antenna arrays with a large number of antennas can be packed in very small volumes, making thus it possible to consider, at least in principle, communication links wherein not only the base-station, but also the user device, are equipped with very large antenna arrays. We denote this configuration as a "doubly-massive" MIMO wireless link. This paper introduces the concept of doubly massive MIMO systems at mmWave, showing that at mmWave the fundamentals of the massive MIMO regime are completely different from what happens at conventional sub-6 GHz cellular frequencies. It is shown for instance that the multiplexing capabilities of the channel and its rank are no longer ruled by the number of transmit and receive antennas, but rather by the number of scattering clusters in the surrounding environment. The implications of the doubly massive MIMO regime on the transceiver processing, on the system energy efficiency and on the system throughput are also discussed.Comment: Accepted for presentation at 2016 IEEE GLOBECOM, Washington (DC), USA, December 201

    Generalized Spatial Modulation in Large-Scale Multiuser MIMO Systems

    Full text link
    Generalized spatial modulation (GSM) uses ntn_t transmit antenna elements but fewer transmit radio frequency (RF) chains, nrfn_{rf}. Spatial modulation (SM) and spatial multiplexing are special cases of GSM with nrf=1n_{rf}=1 and nrf=ntn_{rf}=n_t, respectively. In GSM, in addition to conveying information bits through nrfn_{rf} conventional modulation symbols (for example, QAM), the indices of the nrfn_{rf} active transmit antennas also convey information bits. In this paper, we investigate {\em GSM for large-scale multiuser MIMO communications on the uplink}. Our contributions in this paper include: (ii) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and (iiii) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10−310^{-3}. Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.Comment: IEEE Trans. on Wireless Communications, accepte

    Randomly Spread CDMA: Asymptotics via Statistical Physics

    Full text link
    This paper studies randomly spread code-division multiple access (CDMA) and multiuser detection in the large-system limit using the replica method developed in statistical physics. Arbitrary input distributions and flat fading are considered. A generic multiuser detector in the form of the posterior mean estimator is applied before single-user decoding. The generic detector can be particularized to the matched filter, decorrelator, linear MMSE detector, the jointly or the individually optimal detector, and others. It is found that the detection output for each user, although in general asymptotically non-Gaussian conditioned on the transmitted symbol, converges as the number of users go to infinity to a deterministic function of a "hidden" Gaussian statistic independent of the interferers. Thus the multiuser channel can be decoupled: Each user experiences an equivalent single-user Gaussian channel, whose signal-to-noise ratio suffers a degradation due to the multiple-access interference. The uncoded error performance (e.g., symbol-error-rate) and the mutual information can then be fully characterized using the degradation factor, also known as the multiuser efficiency, which can be obtained by solving a pair of coupled fixed-point equations identified in this paper. Based on a general linear vector channel model, the results are also applicable to MIMO channels such as in multiantenna systems.Comment: To be published in IEEE Transactions on Information Theor
    • …
    corecore